
Andreas Zeller

How Failures Come to be

2

An F-16
(northern hemisphere)

3

An F-16
(southern hemisphere)

4

F-16 Landing Gear

5

The First Bug
September 9, 1947

6

More Bugs

Facts on Debugging

7

• Software bugs are costing ~60 bln US$/yr

• Improvements could reduce cost by 30%

• Validation (including debugging) can easily
take up to 50-75% of the development time

• When debugging, some people are three
times as efficient than others

8

A Sample Program
sample 9 8 7$

Output: 7 8 9

sample 11 14$
Output: 0 11

9

How to Debug
(Sommerville 2004)

Locate error Design
error repair

Repair
error

Re-test
program

10

The Traffic Principle
T
R
A
F
F
I
C

rack the problem
eproduce
utomate
ind Origins
ocus
solate
orrect

11

The Traffic Principle
T
R
A
F
F
I
C

rack the problem
eproduce
utomate
ind Origins
ocus
solate
orrect

12

✘

1. The programmer creates a
defect – an error in the code.

2. When executed, the defect
creates an infection – an
error in the state.

3. The infection propagates.

4. The infection causes a failure.

From Defect to Failure

✘

✘

✘

✘ ✘

Variables

This infection chain must be
traced back – and broken.

t

13

✘

• Not every defect causes
a failure!

• Testing can only show the
presence of errors – not
their absence.
(Dijkstra 1972)

The Curse of Testing

✘

✘

✘

✘ ✘

Variables

14

✘
• Every failure can be

traced back to some
infection, and every
infection is caused by
some defect.

• Debugging means to
relate a given failure to the
defect – and to remove
the defect.

Debugging

✘

✘

✘

✘ ✘

Variables

15

Search in Space + Time
variables

time

!

"

 ?

16

The Defect
variables

time

!

"

!

17

A Program State

18

A Sample Program
sample 9 8 7$

Output: 7 8 9

sample 11 14$
Output: 0 11

19

int main(int argc, char *argv[])
{
 int *a;
 int i;

 a = (int *)malloc((argc - 1) * sizeof(int));
 for (i = 0; i < argc - 1; i++)
 a[i] = atoi(argv[i + 1]);

 shell_sort(a, argc);

 printf("Output: ");
 for (i = 0; i < argc - 1; i++)
 printf("%d ", a[i]);
 printf("\n");

 free(a);

 return 0;
}

20

Find Origins
• The 0 printed is the

value of a[0]. Where
does it come from?

• Basic idea: Track or
deduce value origins

• Separates relevant from
irrelevant values

• We can trace back a[0]
to shell_sort

variables

time

!

!

!

!

!

!

21

static void shell_sort(int a[], int size)
{
 int i, j;
 int h = 1;
 do {
 h = h * 3 + 1;
 } while (h <= size);
 do {
 h /= 3;
 for (i = h; i < size; i++)
 {
 int v = a[i];
 for (j = i; j >= h && a[j - h] > v; j -= h)
 a[j] = a[j - h];
 if (i != j)
 a[j] = v;
 }
 } while (h != 1);
}

22

Search in Time

• In shell_sort, the
state must have
become infected.

• Basic idea:
Observe a
transition from
sane to infected.

variables

time

!

"

!

23

Observing a Run

i = 0

a[i] = atoi(argv[i + 1])

i++

a[i] = atoi(argv[i + 1])

i++

shell_sort(a, argc)

a = malloc(...)

return 0

3 ? ? ? ?"11""14"

0

11

14

1

2

3

1103 "11""14" ? 2

?

variables

time

argc
argv
[0]

argv
[1]

a
[0]

a
[1] i size h

a
[2]

24

Specific Observation
static void shell_sort(int a[], int size)
{

 int i, j;
 int h = 1;
 ...
}

sample 11 14$
a[0] = 11
a[1] = 14
a[2] = 0
size = 3
Output: 0 11

 fprintf(stderr, “At shell_sort”);
 for (i = 0; i < size; i++)
 fprintf(stderr, “a[%d] = %d\n”, i, a[i]);
 fprintf(stderr, “size = %d\n”, size);

The state is infected at the call of shell_sort!

25

 shell_sort(a, argc); shell_sort(a, argc - 1); shell_sort(a, argc);

int main(int argc, char *argv[])
{
 int *a;
 int i;

 a = (int *)malloc((argc - 1) * sizeof(int));
 for (i = 0; i < argc - 1; i++)
 a[i] = atoi(argv[i + 1]);

 ...
}

Fixing the Program

sample 11 14$
Output: 11 14

26

Sane stateInfected state

Finding Causes

The difference
causes the failure

27

Sane stateInfected state

Search in Space

Mixed state

✔✘

Test ?

argc = 3

28

Passing runFailing run

Search in Time

t

argc = 3

argc = 3

a[2] = 0

Transition from argc to a[2]

29

int main(int argc, char *argv[])
{
 int *a;

 // Input array
 a = (int *)malloc((argc - 1) * sizeof(int));
 for (int i = 0; i < argc - 1; i++)
 a[i] = atoi(argv[i + 1]);

 // Sort array
 shell_sort(a, argc);

 // Output array
 printf("Output: ");
 for (int i = 0; i < argc - 1; i++)
 printf("%d ", a[i]);
 printf("\n");

 free(a);
 return 0;
}

Should be argc - 1

30

31

Concepts
A failure comes to be in three stages:

1. The programmer creates a defect

2. The defect causes an infection

3. The infection causes a failure -- an
externally visible error.

Not every defect results in an infection, and
not every infection results in a failure.

32

Concepts (2)
To debug a program, proceed in 7 steps:

T
R
A
F
F
I
C

rack the problem
eproduce
utomate
ind Origins
ocus
solate
orrect

33

Concepts (3)
A variety of tools and techniques is
available to automate debugging:

• Program Slicing

• Observing & Watching State

• Asserting Invariants

• Detecting Anomalies

• Isolating Cause-Effect Chains

34

