
Andreas Zeller

Detecting Anomalies

What’s abnormal?

• Suppose we determine common properties
of all passing runs.

• Now we examine a run which fails the test.

• Any difference in properties correlates with
failure – and is likely to hint at failure causes

2

Detecting Anomalies

3

Run

Run

RunRunRunRun
✔ ✘

Properties Properties

Differences correlate with failure

Properties

4

Data properties that hold in all runs:

• “At f(), x is odd”

• “0 ≤ x ≤ 10 during the run”

Code properties that hold in all runs:

• “f() is always executed”

• “After open(), we eventually have close()”

Techniques

5

Dynamic
Invariants

Value
Ranges

Sampled
Values

Techniques

6

Dynamic
Invariants

Value
Ranges

Sampled
Values

Dynamic Invariants

7

Run

Run

RunRunRunRun
✔ ✘

At f(), x is odd At f(), x = 2

Invariant Property

Daikon

8

• Determines invariants from program runs

• Written by Michael Ernst et al. (1998–)

• C++, Java, Lisp, and other languages

• analyzed up to 13,000 lines of code

public int ex1511(int[] b, int n)
{
 int s = 0;
 int i = 0;
 while (i != n) {
 s = s + b[i];
 i = i + 1;
 }
 return s;
}

Postcondition
b[] = orig(b[])
return == sum(b)

Precondition
n == size(b[])
b != null
n <= 13
n >= 7

Daikon

9

• Run with 100 randomly generated arrays
of length 7–13

Daikon

10

RunRunRunRunRun

Trace

InvariantInvariantInvariantInvariant

✔

get trace

filter invariants

report resultsPostcondition
b[] = orig(b[])
return == sum(b)

Getting the Trace

11

RunRunRunRunRun

Trace

✔

• Records all variable values at all function
entries and exits

• Uses VALGRIND to create the trace

Filtering Invariants

12

Trace

InvariantInvariantInvariantInvariant

• Daikon has a library of
invariant patterns over
variables and constants

• Only matching patterns are
preserved

Method Specifications

13

x = 6 x ∈ {2, 5, –30} x < y

y = 5x + 10 z = 4x +12y +3 z = fn(x, y)

A subseq B x ∈ A sorted(A)

using primitive data

using composite data

checked at method entry + exit

Object Invariants

14

string.content[string.length] = ‘\0’

node.left.value ≤ node.right.value

this.next.last = this

checked at entry + exit of public methods

Matching Invariants

15

A == B

s size(b[])

n

public int ex1511(int[] b, int n)
{
 int s = 0;
 int i = 0;
 while (i != n) {
 s = s + b[i];
 i = i + 1;
 }
 return s;
}

sum(b[])

return
orig(n)

Pattern

Variables

…

== s n size
(b[])

sum
(b[])

orig
(n) ret

s

n

size(b[])

sum(b[])

orig(n)

ret

Matching Invariants

16

s

i
n

A == B

s size(b[])

nsum(b[])

return
orig(n)

Pattern

Variables

…

run 1

✘

✘

✘

✘

✘

✘

✘

✘

✘✘

== s n size
(b[])

sum
(b[])

orig
(n) ret

s

n

size(b[])

sum(b[])

orig(n)

ret

Matching Invariants

17

s

i
n

A == B

s size(b[])

nsum(b[])

return
orig(n)

Pattern

Variables

…

✘

✘

✘ ✘

✘

✘

✘✘

✘

✘

run 2

✘

✘

✘

✘

✘

✘

✘

✘

✘

✘

== s n size
(b[])

sum
(b[])

orig
(n) ret

s

n

size(b[])

sum(b[])

orig(n)

ret

Matching Invariants

18

s

i
n

A == B

s size(b[])

nsum(b[])

return
orig(n)

Pattern

Variables

…

✘

✘

✘ ✘

✘

✘

✘✘

✘

✘

run 3

✘

✘

✘

✘

✘

✘

✘

✘

✘

✘

== s n size
(b[])

sum
(b[])

orig
(n) ret

s

n

size(b[])

sum(b[])

orig(n)

ret

Matching Invariants

19

s == sum(b[])

✘

✘

✘ ✘

✘

✘

✘✘

✘

✘

✘

✘

✘

✘

✘

✘

✘

✘

✘

✘

s == ret

n == size(b[])

ret == sum(b[])

Matching Invariants

20

s == sum(b[])

s == ret

n == size(b[])

ret == sum(b[])

public int ex1511(int[] b, int n)
{
 int s = 0;
 int i = 0;
 while (i != n) {
 s = s + b[i];
 i = i + 1;
 }
 return s;
}

Enhancing Relevance

• Handle polymorphic variables

• Check for derived values

• Eliminate redundant invariants

• Set statistical threshold for relevance

• Verify correctness with static analysis

21

Daikon Discussed

• As long as some property can be observed,
it can be added as a pattern

• Pattern vocabulary determines the
invariants that can be found (“sum()”, etc.)

• Checking all patterns (and combinations!)
is expensive

• Trivial invariants must be eliminated

22

Techniques

23

Dynamic
Invariants

Value
Ranges

Sampled
Values

Dynamic Invariants

24

Run

Run

RunRunRunRun
✔ ✘

At f(), x is odd At f(), x = 2

Invariant Property

Can we check this
on the fly?

Diduce

25

• Determines invariants and violations

• Written by Sudheendra Hangal and Monica
Lam (2001)

• Java bytecode

• analyzed > 30,000 lines of code

Diduce

26

Run

Run

RunRunRunRun
✔ ✘

Invariant Property

Training mode Checking mode

Training Mode

27

RunRunRunRunRun
✔

Invariant

• Start with empty set
of invariants

• Adjust invariants
according to values
found during run

Invariants in Diduce
For each variable, Diduce has a pair (V, M)

• V = initial value of variable

• M = range of values: i-th bit of M is cleared
if value change in i-th bit was observed

• With each assignment of a new value W,
M is updated to M := M ∧ ¬ (W ⊗ V)

• Differences are stored in same format

28

Training Example

29

Code i Values Differences Invariant

i = 10 1010 1010 1111 – – i = 10

i += 1 1011 1010 1110 0001 1111 10 ≤ i ≤ 11 ∧ |i′ – i| = 1

i += 1 1100 1010 1000 0001 1111 8 ≤ i ≤ 15 ∧ |i′ – i| = 1

i += 1 1101 1010 1000 0001 1111 8 ≤ i ≤ 15 ∧ |i′ – i| = 1

i += 2 1111 1010 1000 0001 1101 8 ≤ i ≤ 15 ∧ |i′ – i| ≤ 2

V M V M

During checking, clearing an M-bit is an anomaly

30

• Less space and time requirements

• Invariants are computed on the fly

• Smaller set of invariants

• Less precise invariants

Diduce vs. Daikon

Techniques

31

Dynamic
Invariants

Value
Ranges

Sampled
Values

Detecting Anomalies

32

Run

Run

RunRunRunRun
✔ ✘

Properties Properties

Differences correlate with failure

How do we collect
data in the field?

Liblit’s Sampling

33

• We want properties of runs in the field

• Collecting all this data is too expensive

• Would a sample suffice?

• Sampling experiment by Liblit et al. (2003)

Return Values

• Hypothesis: function return values correlate
with failure or success

• Classified into positive / zero / negative

34

CCRYPT fails

• CCRYPT is an interactive encryption tool

• When CCRYPT asks user for information
before overwriting a file, and user responds
with EOF, CCRYPT crashes

• 3,000 random runs

• Of 1,170 predicates, only file_exists() > 0
and xreadline() == 0 correlate with failure

35

Liblit’s Sampling

36

RunRunRunRunRun
✔

Properties

• Can we apply this
technique to remote
runs, too?

• 1 out of 1000 return
values was sampled

• Performance loss <4%

0 500 1000 1500 2000 2500 3000
0

20

40

60

80

100

120

140

Number of successful trials used

N
u
m

b
e
r

o
f
"g

o
o
d
"

fe
a
tu

re
s
 l
e
ft

Failure Correlation

37

After 3,000 runs,
only five predicates are left

that correlate with failure

Web Services

38

• Sampling is first choice for web services

• Have 1 out of 100 users run an
instrumented version of the web service

• Correlate instrumentation data with failure

• After sufficient number of runs, we can
automatically identify the anomaly

Techniques

39

Dynamic
Invariants

Value
Ranges

Sampled
Values

Anomalies and Causes

40

• An anomaly is not a cause, but a correlation

• Although correlation ≠ causation, anomalies
can be excellent hints

• Future belongs to those who exploit

• Correlations in multiple runs

• Causation in experiments

0

20

40

60

80

0% <10% <20% <30%

10,0

57,0

77,0 79,0

10,0

42,0

64,0
70,0

5,0

35,0
41,0

48,0

0.0

16,0

25,0

37,0

41

Locating Defects
%

 o
f f

ai
lin

g
te

st
s

source code to examine

R
es

ul
ts

 o
bt

ai
ne

d
fr

om
 S

ie
m

en
s

te
st

 s
ui

te
; c

an
 n

ot
 b

e
ge

ne
ra

liz
ed

NN (Renieris + Reiss, ASE 2003) CT (Cleve + Zeller, ICSE 2005)
SD (Liblit et al., PLDI 2005) SOBER (Liu et al, ESEC 2005)

2 runs

5,542 runs

42

Concepts

Comparing data abstractions shows
anomalies correlated with failure

Variety of abstractions and implementations

Anomalies can be excellent hints

Future: Integration of anomalies + causes

43

This work is licensed under the Creative Commons Attribution License. To view a copy of this license, visit

http://creativecommons.org/licenses/by/1.0

or send a letter to Creative Commons, 559 Abbott Way, Stanford, California 94305, USA.

