
Andreas Zeller

Detecting Anomalies



What’s abnormal?

• Suppose we determine common properties 
of all passing runs.

• Now we examine a run which fails the test.

• Any difference in properties correlates with 
failure – and is likely to hint at failure causes
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Properties
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Data properties that hold in all runs:

• “At f(), x is odd”

• “0 ≤ x ≤ 10 during the run”

Code properties that hold in all runs:

• “f() is always executed”

• “After open(), we eventually have close()”
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Dynamic Invariants
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At f(), x is odd At f(), x = 2

Invariant Property



Daikon
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• Determines invariants from program runs

• Written by Michael Ernst et al. (1998–)

• C++, Java, Lisp, and other languages

• analyzed up to 13,000 lines of code



public int ex1511(int[] b, int n)
{
    int s = 0;
    int i = 0;
    while (i != n) {
        s = s + b[i];
        i = i + 1;
    }
    return s;
}

Postcondition
b[] = orig(b[])
return == sum(b)

Precondition
n == size(b[])
b != null
n <= 13
n >= 7

Daikon
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• Run with 100 randomly generated arrays 
of length 7–13



Daikon
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RunRunRunRunRun

Trace

InvariantInvariantInvariantInvariant

✔

get trace

filter invariants

report resultsPostcondition
b[] = orig(b[])
return == sum(b)



Getting the Trace

11

RunRunRunRunRun

Trace

✔

• Records all variable values at all function 
entries and exits

• Uses VALGRIND to create the trace



Filtering Invariants
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Trace

InvariantInvariantInvariantInvariant

• Daikon has a library of 
invariant patterns over 
variables and constants

• Only matching patterns are 
preserved



Method Specifications
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x = 6 x ∈ {2, 5, –30} x < y

y = 5x + 10 z = 4x +12y +3 z = fn(x, y)

A subseq B x ∈ A sorted(A)

using primitive data

using composite data

checked at method entry + exit



Object Invariants
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string.content[string.length] = ‘\0’

node.left.value ≤ node.right.value

this.next.last = this

checked at entry + exit of public methods



Matching Invariants
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A == B

s size(b[])

n

public int ex1511(int[] b, int n)
{
    int s = 0;
    int i = 0;
    while (i != n) {
        s = s + b[i];
        i = i + 1;
    }
    return s;
}

sum(b[])

return
orig(n)

Pattern

Variables

…
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s == sum(b[])
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Matching Invariants
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s == sum(b[])

s == ret

n == size(b[])

ret == sum(b[])

public int ex1511(int[] b, int n)
{
    int s = 0;
    int i = 0;
    while (i != n) {
        s = s + b[i];
        i = i + 1;
    }
    return s;
}



Enhancing Relevance

• Handle polymorphic variables

• Check for derived values

• Eliminate redundant invariants

• Set statistical threshold for relevance

• Verify correctness with static analysis
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Daikon Discussed

• As long as some property can be observed, 
it can be added as a pattern

• Pattern vocabulary determines the 
invariants that can be found (“sum()”, etc.)

• Checking all patterns (and combinations!) 
is expensive

• Trivial invariants must be eliminated
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Dynamic Invariants
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Run

Run

RunRunRunRun
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At f(), x is odd At f(), x = 2

Invariant Property

Can we check this
on the fly?



Diduce
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• Determines invariants and violations

• Written by Sudheendra Hangal and Monica 
Lam (2001)

• Java bytecode

• analyzed > 30,000 lines of code



Diduce
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Run

Run

RunRunRunRun
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Invariant Property

Training mode Checking mode



Training Mode
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RunRunRunRunRun
✔

Invariant

• Start with empty set 
of invariants

• Adjust invariants 
according to values 
found during run



Invariants in Diduce
For each variable, Diduce has a pair (V, M)

• V = initial value of variable

• M = range of values: i-th bit of M is cleared 
if value change in i-th bit was observed

• With each assignment of a new value W, 
M is updated to M := M ∧ ¬ (W ⊗ V)

• Differences are stored in same format
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Training Example
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Code i Values Differences Invariant

i = 10 1010 1010 1111 – – i = 10

i += 1 1011 1010 1110 0001 1111 10 ≤ i ≤ 11 ∧ |i′ – i| = 1

i += 1 1100 1010 1000 0001 1111 8 ≤ i ≤ 15 ∧ |i′ – i| = 1

i += 1 1101 1010 1000 0001 1111 8 ≤ i ≤ 15 ∧ |i′ – i| = 1

i += 2 1111 1010 1000 0001 1101 8 ≤ i ≤ 15 ∧ |i′ – i| ≤ 2

V M V M

During checking, clearing an M-bit is an anomaly
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• Less space and time requirements

• Invariants are computed on the fly

• Smaller set of invariants

• Less precise invariants

Diduce vs. Daikon
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Run

Run

RunRunRunRun
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Properties Properties

Differences correlate with failure

How do we collect 
data in the field?



Liblit’s Sampling
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• We want properties of runs in the field

• Collecting all this data is too expensive

• Would a sample suffice?

• Sampling experiment by Liblit et al. (2003)



Return Values

• Hypothesis: function return values correlate 
with failure or success

• Classified into positive / zero / negative
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CCRYPT fails

• CCRYPT is an interactive encryption tool

• When CCRYPT asks user for information 
before overwriting a file, and user responds 
with EOF, CCRYPT crashes

• 3,000 random runs

• Of 1,170 predicates, only file_exists() > 0 
and xreadline() == 0 correlate with failure
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Liblit’s Sampling
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RunRunRunRunRun
✔

Properties

• Can we apply this 
technique to remote 
runs, too?

• 1 out of 1000 return 
values was sampled

• Performance loss <4%
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After 3,000 runs, 
only five predicates are left

that correlate with failure



Web Services
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• Sampling is first choice for web services

• Have 1 out of 100 users run an 
instrumented version of the web service

• Correlate instrumentation data with failure

• After sufficient number of runs, we can 
automatically identify the anomaly
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Anomalies and Causes
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• An anomaly is not a cause, but a correlation

• Although correlation ≠ causation, anomalies 
can be excellent hints

• Future belongs to those who exploit

• Correlations in multiple runs

• Causation in experiments
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Locating Defects
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Concepts

Comparing data abstractions shows 
anomalies correlated with failure

Variety of abstractions and implementations

Anomalies can be excellent hints

Future: Integration of anomalies + causes
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