Detecting Anomalies
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What’s abnormal?

® Suppose we determine common properties
of all passing runs.

® Now we examine a run which fails the test.

® Any difference in properties correlates with
failure — and is likely to hint at failure causes



Detecting Anomalies

Properties Properties

Differences correlate with failure



Properties

Data properties that hold in all runs:

® “Atf(),x is odd”
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Dynamic Invariants

Invariant H Property

At f(), x is odd At f(),x = 2



Daikon

® Determines invariants from program runs
® Written by Michael Ernst et al. (1998-)
® C++, Java, Lisp, and other languages

® analyzed up to 13,000 lines of code



Daikon

public 1nt ex1511(int[] b, int n)

{ . elh
int s = 0; S
LRt =0 13
while (1 !'= n) { /

SRRyt o o)l Ml [ B
L= 1. +a1: ,
b[] = orig(b[1)
} return == sum(b)
return s;

® Run with 100 randomly generated arrays
of length 7—13



Daikon

get trace
> Trace

filter invariants

v

report results

b[1 = orig(b[D) [

return == sum(b)




Getting the Trace

® Records all variable values at all function
entries and exits

® Uses VALGRIND to create the trace



Filtering Invariants

® Daikon has a library of

Invariant patterns over
variables and constants

® Only matching patterns are
preserved




Method Specifications

using primitive data

X =6 x € {2,5,-30} X <y

y=5x+ 10 [(z=4x+I2y +3 z = fn(x, y)

using composite data

A subseq B X €A sorted(A)

checked at method entry + exit



Object Invariants

string.content[string.length] =\0’

node.left.value < node.right.value

this.next.last = this

checked at entry + exit of public methods



Matching Invariants

public 1nt ex1511(int[] b, int n)
{

int s = 0; Pattern
int 1 = 0;
while (1 !'=n) {
s =5 + blil; s size(b][]
g PPN o S
1 sum(b[]) k
return s; orig(n)
1 return ...

Variables



Matching Invariants
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Matching Invariants
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Matching Invariants
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Matching Invariants
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Matching Invariants

public int ex1511(int[] b, int n) EEEEEIVNI{]l)

{
int s = 0;
int 1 = 0;
while (1 !'= n) {
Sh=rch bl
Ll s n == size(b[])
¥
return s;

¥ ret == sum(b[])




Enhancing Relevance

® Handle polymorphic variables

® Check for derived values

® Eliminate redundant invariants

® Set statistical threshold for relevance

® Verify correctness with static analysis



Daikon Discussed

® As long as some property can be observed,
it can be added as a pattern

® Pattern vocabulary determines the
invariants that can be found (“sum()”, etc.)

® Checking all patterns (and combinations!)
IS expensive

® Trivial invariants must be eliminated
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Dynamic Invariants

PE
-

Can we check this

H Property

At (), x is odd At (), x = 2




Diduce

® Determines invariants and violations

® Written by Sudheendra Hangal and Monica
Lam (2001)

® Java bytecode

® analyzed > 30,000 lines of code



Diduce

Invariant H Property

Training mode Checking mode



Training Mode

® Start with empty set
of invariants

® Adjust invariants
according to values

: found during run
Invariant




Invariants in Diduce

For each variable, Diduce has a pair (V, M)
® V = initial value of variable

® M = range of values: i-th bit of M is cleared
if value change in i-th bit was observed

® With each assighment of a new value WV,
Mis updatedto M :=M A = (W XV)

® Differences are stored in same format



Training Example

Code i Values Differences Invariant

V M Vv M
1 =10 [ I10IO[IOIO[IIIl]| -— — i=10
1 +=1 [[OIT|1010( 1110|0001 [IIlIlT{lIO<i<IIAl|i'=i]=1
1L +=1 [ 1100 1010|1000 0001 [IIIT|8<i<IS5A[’'-i|l=1
1 +=1 |10l [ IOIO|[ 1000 (0001 |IIII|8<i<ISAIlI'=i]=1I
1 +=2 [IIIT]1010[ 1000|0001 (11Ol |8<i<ISA|"—-i<2

During checking, clearing an M-bit is an anomaly




Diduce vs. Daikon

Less space and time requirements
Invariants are computed on the fly
Smaller set of invariants

Less precise invariants
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Detecting Anomalies

e %
How do we collect /v .

data in the field? b~ ﬁ

Properties Properties

Differences correlate with failure



Liblit’s Sampling

® We want properties of runs in the field
® Collecting all this data is too expensive
® Would a sample suffice?

® Sampling experiment by Liblit et al. (2003)



Return Values

® Hypothesis: function return values correlate
with failure or success

® (Classified into positive / zero / negative



CCRYPT fails

® CCRYPT is an interactive encryption tool

® VWhen CCRYPT asks user for information

before overwriting a file, and user responds
with EOF CCRYPT crashes

® 3000 random runs

® Of I,170 predicates, only file_exists() > 0
and xreadline() == 0 correlate with failure



Liblit’s Sampling

® Can we apply this
technique to remote
runs, too!

® | out of 1000 return
values was sampled

Properties

® Performance loss <4%
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Web Services

® Sampling is first choice for web services

® Have | out of 100 users run an
instrumented version of the web service

® Correlate instrumentation data with failure

® After sufficient number of runs, we can
automatically identify the anomaly
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Anomalies and Causes

® An anomaly is not a cause, but a correlation

® Although correlation # causation, anomalies
can be excellent hints

® Future belongs to those who exploit
® Correlations in multiple runs

® Causation in experiments



Locating Defects

©O NN (Renieris + Reiss,ASE 2003) © CT (Cleve + Zeller, ICSE 2005)

©O SD (Liblit et al., PLDI 2005) ©O SOBER (Liu et al, ESEC 2005)
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source code to examine



Concepts

* Comparing data abstractions shows
anomalies correlated with failure

* Variety of abstractions and implementations
* Anomalies can be excellent hints

* Future: Integration of anomalies + causes
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