
Andreas Zeller

Comparing Coverage

2

Tracing Infections

✘

• For every infection, we must find the earlier
infection that causes it.

• Which origin should we focus upon?

3

Tracing Infections

✘

4

Focusing on Anomalies

✘

• Examine origins and locations where
something abnormal happens

What’s normal?

• General idea: Use induction – reasoning
from the particular to the general

• Start with a multitude of runs

• Determine properties that are common
across all runs

5

What’s abnormal?

• Suppose we determine common properties
of all passing runs.

• Now we examine a run which fails the test.

• Any difference in properties correlates with
failure – and is likely to hint at failure causes

6

Detecting Anomalies

7

Run

Run

RunRunRunRun
✔ ✘

Properties Properties

Differences correlate with failure

Properties

8

Data properties that hold in all runs:

• “At f(), x is odd”

• “0 ≤ x ≤ 10 during the run”

Code properties that hold in all runs:

• “f() is always executed”

• “After open(), we eventually have close()”

Comparing Coverage

1. Every failure is caused by an infection,
which in turn is caused by a defect

2. The defect must be executed to start the
infection

3. Code that is executed in failing runs only is
thus likely to cause the defect

9

10

The middle program
middle 3 3 5$

middle: 3

middle 2 1 3$
middle: 1

11

int main(int arc, char *argv[])
{
 int x = atoi(argv[1]);
 int y = atoi(argv[2]);
 int z = atoi(argv[3]);
 int m = middle(x, y, z);

 printf("middle: %d\n", m);

 return 0;
}

12

int middle(int x, int y, int z) {
 int m = z;
 if (y < z) {
 if (x < y)
 m = y;
 else if (x < z)
 m = y;
 } else {
 if (x > y)
 m = y;
 else if (x > z)
 m = x;
 }
 return m;
}

13

Obtaining Coverage
for C programs

14

Obtaining Coverage
for Python programs

if __name__ == "__main__":

 x = sys.argv[1]
 y = sys.argv[2]
 z = sys.argv[3]
 m = middle(x, y, z)

 print "middle:", m

 sys.settrace(tracer)

15

Obtaining Coverage
for Python programs

def tracer(frame, event, arg):
 code = frame.f_code
 function = code.co_name
 filename = code.co_filename
 line = frame.f_lineno
 print filename + ":" + `line` + \
 ":" + function + "():", \
 event, arg
 return tracer

16

Obtaining Coverage
for Python programs

$./middle.py 3 3 5
./middle.py:13:middle(): call None
./middle.py:14:middle(): line None
./middle.py:15:middle(): line None
./middle.py:16:middle(): line None
./middle.py:18:middle(): line None
./middle.py:19:middle(): line None
./middle.py:26:middle(): line None
./middle.py:26:middle(): return 3
middle: 3

For remaining steps,
see new project

x 3 1 3 5 5 2
y 3 2 2 5 3 1
z 5 3 1 5 4 3

• • • • • •
• • • • • •
• • • • • •

•
•

• • •
• •
• • •

•
•

• • • • • •
✔ ✔ ✔ ✔ ✔ ✘

17

int middle(int x, int y, int z) {
 int m = z;
 if (y < z) {
 if (x < y)
 m = y;
 else if (x < z)
 m = y;
 } else {
 if (x > y)
 m = y;
 else if (x > z)
 m = x;
 }
 return m;
}

18

Discrete Coloring
executed only in failing runs

executed in passing and failing runs

executed only in passing runs

highly suspect

ambiguous

likely correct

x 3 1 3 5 5 2
y 3 2 2 5 3 1
z 5 3 1 5 4 3

• • • • • •
• • • • • •
• • • • • •

•
•

• • •
• •
• • •

•
•

• • • • • •
✔ ✔ ✔ ✔ ✔ ✘

19

int middle(int x, int y, int z) {
 int m = z;
 if (y < z) {
 if (x < y)
 m = y;
 else if (x < z)
 m = y;
 } else {
 if (x > y)
 m = y;
 else if (x > z)
 m = x;
 }
 return m;
}

x 3 1 3 5 5 2
y 3 2 2 5 3 1
z 5 3 1 5 4 3

• • • • • •
• • • • • •
• • • • • •

•
•

• • •
• •
• • •

•
•

• • • • • •
✔ ✔ ✔ ✔ ✔ ✘

int middle(int x, int y, int z) {
 int m = z;
 if (y < z) {
 if (x < y)
 m = y;
 else if (x < z)
 m = y;
 } else {
 if (x > y)
 m = y;
 else if (x > z)
 m = x;
 }
 return m;
}

20

21

Continuous Coloring

executed only in failing runs

passing and failing runs

executed only in passing runs

22

Hue

hue(s) = red hue+
%passed(s)

%passed(s)+ %failed(s)
× hue range

0% passed 100% passed

23

Brightness
frequently executed

rarely executed

bright(s) = max
(
%passed(s),%failed(s)

)

x 3 1 3 5 5 2
y 3 2 2 5 3 1
z 5 3 1 5 4 3

• • • • • •
• • • • • •
• • • • • •

•
•

• • •
• •
• • •

•
•

• • • • • •
✔ ✔ ✔ ✔ ✔ ✘

int middle(int x, int y, int z) {
 int m = z;
 if (y < z) {
 if (x < y)
 m = y;
 else if (x < z)
 m = y;
 } else {
 if (x > y)
 m = y;
 else if (x > z)
 m = x;
 }
 return m;
}

24
Source: Jones et al., ICSE 2002

25 Source: Jones et al., ICSE 2002

26

Evaluation

How well does comparing coverage detect
anomalies?

• How green are the defects? (false negatives)

• How red are non-defects? (false positives)

Space

• 8000 lines of executable code

• 1000 test suites with156–4700 test cases

• 20 defective versions with one defect each
(corrected in subsequent version)

27

28

18 of 20 defects are
correctly classified in the
“reddest” portion of the

code

Source: Jones et al., ICSE 2002

29

The “reddest” portion is at
most 20% of the code

Source: Jones et al., ICSE 2002

Siemens Suite

• 7 C programs, 170–560 lines

• 132 variations with one defect each

• 108 all yellow (i.e., useless)

• 1 with one red statement (at the defect)

30 Source: Renieris and Reiss, ASE 2003

Nearest Neighbor

31

Run

Run

RunRunRunRun
✔ ✘

Nearest Neighbor

32

Run

Run

RunRunRunRun
✔ ✘

Compare with the single run
that has the most similar coverage

✔

33

Locating Defects

0

25

50

75

100

0 <10 <20 <30 <40 <50 <60 <70 <80 <90 <100

Nearest Neighbor Intersection

%
 o

f f
ai

lin
g

te
st

s

% of executed source code to examine

Renieris+Reiss (ASE 2003)

R
es

ul
ts

 o
bt

ai
ne

d
fr

om
 S

ie
m

en
s

te
st

 s
ui

te
; c

an
 n

ot
 b

e
ge

ne
ra

liz
ed

Jones et al. (ICSE 2002)

Sequences

34

open() read() close() ✔

open() close() read() ✘

close() open() read() ✘

Sequences of locations can correlate with failures:

…but all locations are executed in both runs!

35

The AspectJ Compiler
ajc Test3.aj$
java test.Test3$

test.Test3@b8df17.x Unexpected Signal : 11
occurred at PC=0xFA415A00
Function name=(N/A) Library=(N/A) ...
Please report this error at http://java.sun.com/
...

$

Coverage Differences

36

• Compare the failing run with passing runs

• BcelShadow.getThisJoinPointVar() is
invoked in the failing run only

• Unfortunately, this method is correct

Sequence Differences

37

This sequence occurs only in the failing run:

〈 ThisJoinPointVisitor.isRef(),

ThisJoinPointVisitor.canTreatAsStatic(),

MethodDeclaration.traverse(),

ThisJoinPointVisitor.isRef(),

ThisJoinPointVisitor.isRef()

〉

Defect location

Collecting Sequences

38

mark read read skip read read skip read

mark read

read read

read skip

skip read

read read

read skip

skip read

mark read

read read

read skip

skip read

Trace

Sequences Sequence Set

anInputStreamObj

InputStream

Ingoing vs. Outgoing

39

aProducer aQueue aLinkedList

add
add

aConsumer

isEmpty
size

get

firstElement

removeFirst
isEmpty

size

add

add
add

add

incoming
calls

outgoing
calls

aLogger

add

Anomalies

40

1.0

0.5
0

0.5

0.5 0.5
1.0

passing run passing run

failing run

0.60

0.50

0.40

ranking by average weightweights

NanoXML

41

• Simple XML parser written in Java

• 5 revisions, each with 16–23 classes

• 33 errors discovered or seeded

Locating Defects

42

0

25

50

75

100

0 1 2 3 4 5 6 7 8 9

AMPLE/window size 8

classes to examine (of 16)

%
 o

f f
ai

lin
g

te
st

s

on average 0.5 classes
less than window size 1

R
es

ul
ts

 o
bt

ai
ne

d
fr

om
 N

an
oX

M
L;

 c
an

 n
ot

 b
e

ge
ne

ra
liz

ed

Dallmeier et al. (ECOOP 2005)

43

44

Concepts

Comparing coverage (or other features)
shows anomalies correlated with failure

Nearest neighbor or sequences locate
errors more precisely than just coverage

Low overhead + simple to realize

45

This work is licensed under the Creative Commons Attribution License. To view a copy of this license, visit

http://creativecommons.org/licenses/by/1.0

or send a letter to Creative Commons, 559 Abbott Way, Stanford, California 94305, USA.

