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Abstract

All analyses of version archives have one phase in com-
mon: the preprocessing of data. Preprocessing has a direct
impact on the quality of the results returned by an analy-
sis. In this paper we discuss four essential preprocessing
tasks necessary for a fine-grained analysis ofCVSarchives:
(a) data extraction, (b) transaction recovery, (c) mapping
of changes to fine-grained entities, and (d) data cleaning.
We formalize the concept of sliding time windows and show
how commit mails can relate revisions to transactions. We
also present two approaches that map changes to the af-
fected building blocks of a file, e.g. functions or sections.

1. Introduction

One of the first papers that analyzed version archives has
the striking title “If Your Version Control System Could
Talk. . . ”[1]. In these days, manyCVS [4] archives are freely
available, e.g. via SourceForge.net. They all provide lots
of information on the evolution of a software project:who
changedwhatandwhy.

Such data enables many new analyses. Besides the obvi-
ous analysis of software evolution, it is also valuable input
for program analysis (e.g. [2, 10, 19]), as well as for met-
rics (e.g. [3]). All approaches have one thing in common—
they have topreprocessdata, because direct access viaCVS
clients is rather slow. Additionally, some important infor-
mation is not accessible viaCVS: Which files have been
changed in conjunction, and which methods have been af-
fected by a change. The latter is essential for fine-grained
analysis of version archives, e.g. on function-level.

In this paper, we focus on four preprocessing tasks that
are performed by most analyses:

• Data Extraction—In Section 2 we present a light-
weight and fast approach to mirrorCVS information
in a database.

• Restoring Transactions—Many analyses require the
information which files have been changed in conjunc-

tion. In Section 3 we present two approaches that re-
store such transactions based on sliding time windows
and commit mails.

• Mapping Changes to Entities—CVS stores only
changes on files. For an analysis of functions, changes
have to be examined in more detail. Section 4 presents
an extensible approach that determines entities af-
fected by a change on a file.

• Data Cleaning—Some transactions require special
treatments by an analysis: For example,large transac-
tions often result from infrastructure changes.Merge
transactionssimply reproduce changes and thus are of-
ten noise. Section 5 discusses such topics.

Preprocessing is a prerequisite for a fast access toCVSdata.
This data is enriched by additional information (transac-
tions, fine-granular changes). Section 6 gives further ref-
erences to related work, and Section 7 concludes the paper.

2. Data Extraction

One goal for preprocessing is to enable a fast access to the
content of aCVS archive. A common solution extracts all
data from theCVS repository and mirrors it in a database.

In general, it depends on the analysis what data needs to
be extracted. For instance, if we analyze software evolution
we are interested in everything, including deleted files. If
the purpose of our analysis is to guide programmers along
related changes [20], we need only existing files, because
suggesting that the user should change deleted files would
be awkward. In this case it suffices to extract only a subset
of all files stored in the repository. But in practice, the filter-
ing should be performed within the analysis and not within
the extraction.

The extraction calls theCVS log command in the root
directory of the project to be extracted. This returns infor-
mation on all files that have ever existed in the repository.
We parse this output as illustrated in Figure 1 and store the
data in appropriate tables:

• Obviously, allfilesanddirectoriesare stored.
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Figure 1. Data Extraction

• Information about singlerevisionsis stored in the ta-
ble Revisions. The author and the log message are
stored in the tableTransactions, because in this step,
we treat each revision as onetransaction—Section 3
groups several revisions/transactions together.

• With CVS the user can set symbolic names for revi-
sions. These symbolic names are calledtagsand are
frequently used to mark releases or other events.

• The tableBranchesrecords the branch points and
branch names. This information has to be gathered
from two different sections of theCVS log output (see
Figure 1). Branch names are symbolic names for re-
vision numbers that contain a zero, e.g.JDK 1 5
for revision number1.15.0.2. The branch prefix is
constructed by removing the zero—in our example it
is 1.15.2. The link between the section “symbolic
names” and the branch point is established by a hash
map using the branch prefix as keys.

Note that all preprocessing steps can also be donein-
crementally—it is only necessary to preprocess the data for
new revisions instead of working on the whole repository
again. To determine new revisions several approaches ex-
ist: Many open-source projects send an email to a mailing
list for each commit. This approach is based on thecommit-
info and loginfo files that can be used to track commits on
the server-side. A possibility to get recently changed files
on the client-side is theCVS rdiff operation (with option-s
for summary) or theCVS statusoperation.

3. Restoring Transactions

CVS does not keep track of which files have been changed
in conjunction in one commit operation. Often this infor-
mation is required for an analysis, e.g. for determination of
logical coupling [10, 19]. An obvious solution is to con-
sider all changes by the same developer, with the same log
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(a) Fixed Time Window

���������	
��

������������


��	
���������
	���������	
����

����� ����� �����  ���� !���"

#�������$����%���	&

(b) Sliding Time Window

Figure 2. Fixed vs. Sliding Time Window

message, made at the same time as onetransaction. The
term “same time” is inaccurate in this context, because usu-
ally commit operations take several seconds or minutes—
especially if many files are involved. In practice, many
approaches consider not only checkins at the same time as
candidates, but also checkins during a time interval:

Fixed Time Windows restrict the maximal duration of a
transaction. The time interval always begins at thefirst
checkin. This approach has been used by [15, 10] for
the analysis ofCVS archives.

Sliding Time Windows restrict the maximal gap between
two subsequent checkins of a transaction. The begin of
the time interval is shifted to themost recent checkin.
Thus, this approach can recognize transactions that
take longer to complete than the duration of the time
window. This approach originates fromChangeLog
programs likecvs2cl[9] or CVSps[13].

Figure 2(a) illustrates fixed time windows: After the
checkin ofA:1.3 both checkinsB:1.2 andC:1.4 are part of
the same transaction, because they are visible within the
time window (drawn in white). Figure 2(b) shows that a
sliding time window additionally considersD:1.3 andE:1.5,
because the time window “slides” from checkinsA:1.3 to
finally E:1.5. The transaction is closed afterE:1.5 as no fur-
ther checkins are visible within the time window.

Formally, using a sliding time window of 200 seconds,
for all checkinsδ1, . . . , δk (sorted bytime(δi)) that are part
of a transaction∆, the following conditions hold:

∀δi ∈ ∆ : author(δi) = author(δ1)
∀δi ∈ ∆ : log message(δi) = log message(δ1)

∀i ∈ {2, . . . , k} : |time(δi)− time(δi−1)| ≤ 〈200 sec〉

Additionally, each file can only be part of a single trans-
action once, becauseCVS does not allow to commit two
revisions of a file at the same time:

∀δa, δb ∈ ∆ : δa 6= δb ⇒ file(δa) 6= file(δb)



The algorithm for grouping checkins to transactions is
straightforward: Simply sort checkins by author, checkin
time, and log message. Iterate over checkins in this order:
Each time the author or log message differs to the ones of
the previous checkin or the time window is exceeded start a
new transaction.

Based on our experience, sliding time windows are supe-
rior to fixed time windows, because they deal with transac-
tions of any duration. The selection of the length of a time
window (fixed or sliding) depends on the analyzed project
and the analysis itself. The time window should be chosen
based on the assumption on how long it takes to check in
the largest file with high network latency. Up to now, most
lengths of time windows are arbitrary: They range from two
to four minutes.

In our approach we chose 200 seconds which is three
minutes plus a buffer of 20 seconds. Without this buffer the
end of the time window can clash with the release of aCVS
lock. In this case the continuation of an interrupted transac-
tion is considered as a new transaction. Using such a time
window for theGNU Compiler Collection (GCC), the aver-
age duration of a transaction is 6.2 seconds and the maximal
duration 1 hour 32 minutes1.

Time windows are a good approximation for restoring
transactions fromCVS. A more precise solution is based on
commit mails—that are mails sent to developer mailing lists
after a commit. Such a mail contains the committer, the
timestamp, the modified files, and the log message. With
this information it is straightforward to relate files to revi-
sions and then to transactions. Commit mails are available
for many open-source projects, e.g.GCC.

4. Mapping Changes to Entities

CVS provides only information on files and differences, but
not which function has been changed. For an analysis of
such fine-grained entities, another preprocessing step is re-
quired: Each revision is compared with its predecessor and
the changes are mapped to syntactic components of files.
If a revision is a merge of multiple predecessors, it should
get a special treatment (see Section 5). A revision with no
predecessors is compared against an empty file.

Fine-grained changes can be computed using adiff -tool
and a light-weight analysis that creates the building block
of files. This approach is open to everything: source code,
documentation,XML files and even diagrams. For a change
from revisionr1 to r2 we compute the entities as follows:

1. Create mappingsEi : int → entities from source
code lines to entities using a light-weight analysis (e.g.
counting brackets). The mapping for revisionr1 is
calledE1 and forr2 it is E2.

1Transaction “dummy import to prevent merge lossage” (4081 files)
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Figure 3. Map Changes to Entities

2. Perform adiff betweenr1 andr2. The results are the
lines affected by the change: linesL1 for revisionr1

andL2 for r2.

3. The entities (functions, sections) inr1 affected by the
change areC1 (respectivelyC2 for r2):

C1 =
⋃

l∈L1

E1(l) C2 =
⋃

l∈L2

E2(l)

4. Thus the change from revisionr1 to r2. . .

– actuallychangedentitiesC1 ∩ C2

– addedentitiesC2 \ C1

– removedentitiesC1 \ C2

Figure 3 shows an example for the above algorithm. First
each revision is decomposed into its building blocks—
in our example functions. Then a diff between the two
revisions r1 and r2 is calculated. The result is used
to create the setsL1 = {14, . . . , 17, 42} and L2 =
{14, 15, 16, 42, . . . , 67}. Next, each line is mapped to its
enclosing function and the setsC1 = {D()} and C2 =
{D(), F()} are created. Now we know that the functionD()
has been modified (C1 ∩ C2) and F() has been inserted
(C2 \ C1).

This approach has two weaknesses: First, its quality de-
pends largely on the precision of the used diff tool, and sec-
ond, it determines changes only based on lines, rather than
on exact source code positions. Thus, in some rare cases
this approach recognizes too many changed entities.

A more precise but more expensive approach first deter-
mines all entities that occur in both revisions. Then it com-
pares the source codes of each of those entities. In other
words, the diff operation is pushed from file-level to entity-
level:

1. Determine all entitiesE1 of revisionr1 and all entities
E2 of revisionr2.

2. Theaddedentities areE2\E1, and theremovedentities
areE1 \ E2.



3. All entities inE1∩E2 mayhave been changed. Whether
an entitye has been actually changed is decided by
performing a diff between the source-code ofe in r1

and its source-code inr2.

For the example of Figure 3 the above algorithm first deter-
mines that the functionF() is new, because it appears only
in revisionr2. Next, it compares for each function the re-
spective parts and recognizes thatD() has been changed.

TheECLIPSEplatform [16] provides a powerful and ex-
tensible framework for comparing files. Both approaches
described above can be realized using this framework:

• Range Differencer—The RangeDifferencer2 class
compares two versions based ontokens. This ap-
proach is based on the traditionaldiff algorithm [14].
The tokens are created using classes implementing the
interface ITokenComparator3, e.g. for lines the class
DocLineComparator4. The calculated differences are
returned in a list.

• Structure Merge Viewer—TheDifferencer5 class com-
pares two versions of any givenhierarchical struc-
ture and returns a delta tree describing each change
in detail. The structure is created with an own im-
plementation of the interfaceIStructureCreator6. The
fearless can use existinginternal classes7, e.g. the
JavaStructureCreator8.

Furthermore,ECLIPSEprovides easy access toJAVA ab-
stract syntax trees and facilitates further analysis of source
code. The only drawback is that many of those features
cannot be executed from the command line.

5. Data Cleaning

The previous sections described the extraction of data that
is needed for fine-grained analysis. However, several issues
call for identifying noise and appropriate cleaning (i.e. a
special treatment).Large transactionswhich often result
from infrastructure changes andmerge transactionswhich
simply reproduce changes are such noise.

Large Transactions

Large transactions are very frequent in real-life. Here are
two examples fromOPENSSL:

2compare.rangedifferencer.RangeDifferencer
3compare.contentmergeviewer.ITokenComparator
4compare.internal.DocLineComparator
5compare.structuremergeviewer.Differencer
6compare.structuremergeviewer.IStructureCreator
7Read [17] before you decide to use internal classes.
8jdt.internal.ui.compare.JavaStructureCreator
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Figure 4. Merges Considered Harmful

• “Change #include filenames from<foo.h> [sigh] to
<openssl.h>.” (552 files)

• “Change functions to ANSI C.”(491 files)

As the log messages indicate, the files contained in these
transactions have been changed because of infrastructure
changes and not because of logical relations. We refer to
such transactions as noise, as it is likely that we will get
incorrect results if we use them for any analysis.

A solution is to filter out transactions of size greaterN in
the analysis. The upper boundN depends on the examined
software project.

Merge Transactions

Another more sophisticated kind of noise are merges of
branches.CVS simply reproduces all changes made to one
branch to the other—in one large transaction. One real-life
example taken fromGCC is the following:

“mainline merge as of 2003-05-04”(5874 files)

Figure 4 shows a smaller example: On the branch
four transaction have been committed:{A,B}, {C,D},
{E,F}, and{G, H}. These files are now again changed
at the merge point within a transaction that contains all
changes made on the branch:{A,B,C, D, E, F,G, H}.

Merge transactions are noise for two reasons: First, they
contain unrelated changes (e.g.B andC), and second they
rank changes on branches higher (because they are dupli-
cated, e.g.A andB). Taking such transactions into account
has a significant influence on the results. Thus transactions
that resulted from merges have to be identified. Depending
on the analysis they should be ignored or at least get some
special treatment.

Unfortunately,CVS does not keep track of which revi-
sions resulted from a merge. Michael Fischer et al. pro-
posed a heuristic to detect these revisions [8]. Their ap-
proach is restricted to merges to the main branch, but it is
straightforward to apply it to other branches. Additionally,
they work only on revisions instead of analyzing complete
transactions. Analyzing transactions simplifies the detec-
tion of merges, because if a merge is detected for a single
file, the whole transaction is probably a merge. Nonethe-
less, automatic merge detection is difficult to realize, be-
cause of the large number of existing merge policies. For



example, as Figure 4 indicates the development can con-
tinue on both branches after a merge, creating additional
complexity for all heuristics.

6. Related Work

Data extraction fromCVS is very well covered and many
tools are available for free: Daniel German and Audris
Mockus createdSoftChange9—a tool that extracts and sum-
marizes information fromCVS and bug tracking databases
[11]. Dirk Draheim and Lukasz Pekacki developedBloof10

which extractsCVS log data into a database and visualizes
the software evolution using metrics [6].

Michael Fischer et al. demonstrated how to populate
a release history databaselinking data from CVS and
BUGZILLA [8]. In [7] they also combined their approach
with features. Another project that considers additional data
sources isHipikat by DavorČubraníc and Gail Murphy [5].
They link information fromCVS, BUGZILLA and developer
mailing lists using text similarity.

To our knowledge, transaction recovery has been used by
many approaches but has nowhere been covered in detail:
Harald Gall, Daniel German, and Audris Mockus used fixed
time windows in the past [10, 11, 15], and we used sliding
time windows in our previous work [19, 20]. Commit mails
have not been used in recent work to restore transactions.

Up to now, only a few approaches have considered fine-
grained changes: Harald Gall et al. [10] and James Bieman
et al. [3] both analyzed relations between classes. In our
previous work we applied the approach presented in Sec-
tion 4 and mined for relations [19] and association rules [20]
between functions, sections and other fine-grained building
blocks.

Michael Fischer et al. also proposed an algorithm for de-
tecting merges of revisions in their release history database
paper [8]. Lijie Zou and Michael Godfrey showed how to
use origin analysis to detect merging and splitting of func-
tions in [21]. Nonetheless, data cleaning is often neglected
and there is still much room for improvement.

7. Conclusion

CVS archives contain lots of information—which is usually
accessible via clients. This data provides a basis for anal-
yses that mine additional knowledge. ButCVS has some
weaknesses: it is slow and loses information on transac-
tions, fine-grained changes and merges. Thus, a preprocess-
ing step is required.

This paper is a first attempt to collect and formalize
preprocessing tasks that are used by analyses of version

9http://sourcechange.sourceforge.net
10http://bloof.sourceforge.net

archives. We hope that it facilitates upcoming research in
this area and provides a fruitful base for further discussions.
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