
0/22

�

�

�

�

�

�

	

Microsoft Research, Redmond, Washington, 2003-10-13

Why does my Program fail?
Causes and effects in computer programs

Andreas Zeller
Lehrstuhl Softwaretechnik
Universität des Saarlandes, Saarbrücken

http://www.st.cs.uni-sb.de/~zeller/

1/22

�

�

�

�

�

�

	

A True Story

Consider the following C program:

double bug(double z[], int n) {
int i, j;

i = 0;
for (j = 0; j < n; j++) {
i = i + j + 1;
z[i] = z[i] ∗ (z[0] + 1.0);

}
return z[n];

}

Compiling bug.c, the GNU compiler (GCC) crashes:

linux$ gcc-2.95.2 -O bug.c
gcc: Internal error: program cc1 got fatal signal 11

What’s the error that causes this failure?

2/22

�

�

�

�

�

�

	

Errors

What’s the error in GCC?

An error is a deviation from what’s correct, right,
or true. — IEEE Standard Glossary of SE Terminology

To prove that something is an error, we must
show the deviation:

• simple for the failure in question

• hard for the program code

General technique: Deduction—reasoning from the abstract
(code) to the concrete (run): static analysis, verification, . . .

Where does GCC deviate from—what?

3/22

�

�

�

�

�

�

	

Causes

What’s the cause for the GCC failure?

The cause of any event (“effect”) is a preceding event
without which the effect would not have occurred.

— Microsoft Encarta

To prove causality, we must show that

1. the effect occurs when the cause occurs

2. the effect does not occur when the cause does not occur.

General technique: Experimentation—constructing a theory
from a series of experiments (runs)

Can’t we automate experimentation?

4/22

�

�

�

�

�

�

	

Isolating Failure Causes

Delta Debugging automatically isolates the
failure-inducing difference in the GCC input:

GCC input test
1 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✘

2 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✔

4/22

�

�

�

�

�

�

	

Isolating Failure Causes

Delta Debugging automatically isolates the
failure-inducing difference in the GCC input:

GCC input test
1 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✘

2 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✔
3 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . }

4/22

�

�

�

�

�

�

	

Isolating Failure Causes

Delta Debugging automatically isolates the
failure-inducing difference in the GCC input:

GCC input test
1 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✘

2 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✔
3 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✔

4/22

�

�

�

�

�

�

	

Isolating Failure Causes

Delta Debugging automatically isolates the
failure-inducing difference in the GCC input:

GCC input test
1 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✘

2 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✔
3 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✔
4 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . }

4/22

�

�

�

�

�

�

	

Isolating Failure Causes

Delta Debugging automatically isolates the
failure-inducing difference in the GCC input:

GCC input test
1 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✘

2 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✔
3 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✔
4 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✔

4/22

�

�

�

�

�

�

	

Isolating Failure Causes

Delta Debugging automatically isolates the
failure-inducing difference in the GCC input:

GCC input test
1 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✘

2 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✔
3 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✔
4 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✔

5 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . }. . . }

4/22

�

�

�

�

�

�

	

Isolating Failure Causes

Delta Debugging automatically isolates the
failure-inducing difference in the GCC input:

GCC input test
1 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✘

2 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✔
3 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✔
4 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✔

5 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . }. . . } ✘

4/22

�

�

�

�

�

�

	

Isolating Failure Causes

Delta Debugging automatically isolates the
failure-inducing difference in the GCC input:

GCC input test
1 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✘

2 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✔
3 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✔
4 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✔

5 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . }. . . } ✘
...

19 . . . z[i] = z[i]∗ (z[0]+ 1.0); . . . ✘
18 . . . z[i] = z[i]∗ (z[0]+ 1.0); . . . ✔

...

+ 1.0 is the failure cause – after only 19 tests (≈ 2 seconds).

5/22

�

�

�

�

�

�

	

What’s going on in GCC?

The difference + 1.0 is just the beginning
of a cause-effect chain within the GCC run.

Input

.

.

.

.

.

.

.

.

.

Program State (= Variables)

.

.

.

Final State

5/22

�

�

�

�

�

�

	

What’s going on in GCC?

The difference + 1.0 is just the beginning
of a cause-effect chain within the GCC run.

Input

.

.

.

.

.

.

.

.

.

Program State (= Variables)

.

.

.

Final State

+1.0

5/22

�

�

�

�

�

�

	

What’s going on in GCC?

The difference + 1.0 is just the beginning
of a cause-effect chain within the GCC run.

Input

.

.

.

.

.

.

.

.

.

Program State (= Variables)

.

.

.

Final State

+1.0

5/22

�

�

�

�

�

�

	

What’s going on in GCC?

The difference + 1.0 is just the beginning
of a cause-effect chain within the GCC run.

Input

.

.

.

.

.

.

.

.

.

Program State (= Variables)

.

.

.

Final State

+1.0

5/22

�

�

�

�

�

�

	

What’s going on in GCC?

The difference + 1.0 is just the beginning
of a cause-effect chain within the GCC run.

Input

.

.

.

.

.

.

.

.

.

Program State (= Variables)

.

.

.

Final State

✘+1.0

To fix the failure, we must break this cause-effect chain.

6/22

�

�

�

�

�

�

	

Tracing Data Flow

Classical program analysis traces how data propagates in
programs.

Requires complete knowledge about entire code and its
semantics ⇒ OK for small, isolated, managed programs.

But: Real programs are opaque, parallel, distributed, dynamic,
multilingual

6/22

�

�

�

�

�

�

	

Tracing Data Flow

Classical program analysis traces how data propagates in
programs.

Requires complete knowledge about entire code and its
semantics ⇒ OK for small, isolated, managed programs.

But: Real programs are opaque, parallel, distributed, dynamic,
multilingual—or simply obscure:

struct foo {
int tp, len;
union {
char c[1];
int i[1];
double d[1];

}
}

6/22

�

�

�

�

�

�

	

Tracing Data Flow

Classical program analysis traces how data propagates in
programs.

Requires complete knowledge about entire code and its
semantics ⇒ OK for small, isolated, managed programs.

But: Real programs are opaque, parallel, distributed, dynamic,
multilingual—or simply obscure:

struct foo {
int tp, len;
union {
char c[1];
int i[1];
double d[1];

}
}

// Allocate string
int len = 200;
int bytes = len + 2 * sizeof(int);
foo *x = (foo *)malloc(bytes);
x->tp = STRING;
x->len = len;
strncpy(x->c, "Some string", len);

7/22

�

�

�

�

�

�

	

Small Cause, Big Effect

Another problem—differences accumulate during execution:

Input

.

.

.

.

.

.

.

.

.

Program State (= Variables)

.

.

.

Final State

✘+1.0

How do we isolate the relevant state differences?

8/22

�

�

�

�

�

�

	

Relevant State Differences

Using a debugger (GDB), we can examine and alter the
program state at various events during a program run.

Example: GCC state in the function combine instructions

reg rtx no cur insn uid last linenum first loop store insn test
1 32 74 15 0x81fc4e4 ✘

8/22

�

�

�

�

�

�

	

Relevant State Differences

Using a debugger (GDB), we can examine and alter the
program state at various events during a program run.

Example: GCC state in the function combine instructions

reg rtx no cur insn uid last linenum first loop store insn test
1 32 74 15 0x81fc4e4 ✘

2 31 70 14 0x81fc4a0 ✔

8/22

�

�

�

�

�

�

	

Relevant State Differences

Using a debugger (GDB), we can examine and alter the
program state at various events during a program run.

Example: GCC state in the function combine instructions

reg rtx no cur insn uid last linenum first loop store insn test
1 32 74 15 0x81fc4e4 ✘

2 31 70 14 0x81fc4a0 ✔
3 32 74 14 0x81fc4a0

8/22

�

�

�

�

�

�

	

Relevant State Differences

Using a debugger (GDB), we can examine and alter the
program state at various events during a program run.

Example: GCC state in the function combine instructions

reg rtx no cur insn uid last linenum first loop store insn test
1 32 74 15 0x81fc4e4 ✘

2 31 70 14 0x81fc4a0 ✔
3 32 74 14 0x81fc4a0 ✔

8/22

�

�

�

�

�

�

	

Relevant State Differences

Using a debugger (GDB), we can examine and alter the
program state at various events during a program run.

Example: GCC state in the function combine instructions

reg rtx no cur insn uid last linenum first loop store insn test
1 32 74 15 0x81fc4e4 ✘

2 31 70 14 0x81fc4a0 ✔
3 32 74 14 0x81fc4a0 ✔
4 32 74 14 0x81fc4e4

8/22

�

�

�

�

�

�

	

Relevant State Differences

Using a debugger (GDB), we can examine and alter the
program state at various events during a program run.

Example: GCC state in the function combine instructions

reg rtx no cur insn uid last linenum first loop store insn test
1 32 74 15 0x81fc4e4 ✘

2 31 70 14 0x81fc4a0 ✔
3 32 74 14 0x81fc4a0 ✔
4 32 74 14 0x81fc4e4

8/22

�

�

�

�

�

�

	

Relevant State Differences

Using a debugger (GDB), we can examine and alter the
program state at various events during a program run.

Example: GCC state in the function combine instructions

reg rtx no cur insn uid last linenum first loop store insn test
1 32 74 15 0x81fc4e4 ✘

2 31 70 14 0x81fc4a0 ✔
3 32 74 14 0x81fc4a0 ✔
4 32 74 14 0x81fc4e4
5 32 74 15 0x81fc4a0 ✔

8/22

�

�

�

�

�

�

	

Relevant State Differences

Using a debugger (GDB), we can examine and alter the
program state at various events during a program run.

Example: GCC state in the function combine instructions

reg rtx no cur insn uid last linenum first loop store insn test
1 32 74 15 0x81fc4e4 ✘

2 31 70 14 0x81fc4a0 ✔
3 32 74 14 0x81fc4a0 ✔
4 32 74 14 0x81fc4e4
5 32 74 15 0x81fc4a0 ✔

Consequence: determine and apply structural differences!

9/22

�

�

�

�

�

�

	

The GCC Memory Graph

Our IGOR prototype extracts the program state as graph:
Vertices are variables, edges are references

42991 vertices
44290 edges

10/22

�

�

�

�

�

�

	

Structural Differences

IGOR can compute structural graph differences:∆15 creates a variable, ∆20 deletes another

r✔

r✘
()->next ()->nextlist

14 18 22
()->next

15

()->next ()->nextlist

14 18 22
()->next

20

∆15−−→
()->next ()->nextlist

14 18 22
()->next

15

()->next ()->nextlist

14 18 22

15

()->next

()->next

20

∆20

y ∆20

y

()->next ()->nextlist

14 18 22
()->next

15

()->nextlist

14 18 22

()->next

20

∆15−−→
()->next ()->nextlist

14 18 22
()->next

15

()->next

list

14 18 22

15

()->next

()->next

20

11/22

�

�

�

�

�

�

	

The Process in a Nutshell

11/22

�

�

�

�

�

�

	

The Process in a Nutshell

11/22

�

�

�

�

�

�

	

The Process in a Nutshell

12/22

�

�

�

�

�

�

	

Relevant State Differences

IGOR examines the state of cc1 in combine instructions:
871 nodes (= variables) are different

0

100

200

300

400

500

600

700

800

900

0 5 10 15 20 25 30 35 40 45

De
lta

s

�

Tests executed

Delta Debugging Log

cpass
cfail

12/22

�

�

�

�

�

�

	

Relevant State Differences

IGOR examines the state of cc1 in combine instructions:
871 nodes (= variables) are different

0

100

200

300

400

500

600

700

800

900

0 5 10 15 20 25 30 35 40 45

De
lta

s

�

Tests executed

Delta Debugging Log

cpass
cfail

Only one variable causes the failure:

$m = (struct rtx def *)malloc(12)
$m->code = PLUS
first loop store insn->fld[1]...rtx = $m

13/22

�

�

�

�

�

�

	

The GCC Cause-Effect Chain

After 59 tests, IGOR has determined these failure causes:wwwwwwwwwwwwwwwwwwwwwwwwwwww�

1. Execution reaches main.
Since the program was invoked as “cc1 -O fail.i”,
variable argv[2] is now “fail.i”.

13/22

�

�

�

�

�

�

	

The GCC Cause-Effect Chain

After 59 tests, IGOR has determined these failure causes:wwwwwwwwwwwwwwwwwwwwwwwwwwww�

1. Execution reaches main.
Since the program was invoked as “cc1 -O fail.i”,
variable argv[2] is now “fail.i”.

2. Execution reaches combine instructions.
Since argv[2] was “fail.i”,
variable *first loop store insn→fld[1].rtx→fld[1].rtx→

fld[3].rtx→fld[1].rtx is now 〈new rtx def〉.

13/22

�

�

�

�

�

�

	

The GCC Cause-Effect Chain

After 59 tests, IGOR has determined these failure causes:wwwwwwwwwwwwwwwwwwwwwwwwwwww�

1. Execution reaches main.
Since the program was invoked as “cc1 -O fail.i”,
variable argv[2] is now “fail.i”.

2. Execution reaches combine instructions.
Since argv[2] was “fail.i”,
variable *first loop store insn→fld[1].rtx→fld[1].rtx→

fld[3].rtx→fld[1].rtx is now 〈new rtx def〉.

3. Execution reaches if then else cond (95th hit).
Since *first loop store insn→fld[1].rtx→fld[1].rtx→

fld[3].rtx→fld[1].rtx was 〈new rtx def〉,
variable link→fld[0].rtx→fld[0].rtx is now link.

13/22

�

�

�

�

�

�

	

The GCC Cause-Effect Chain

After 59 tests, IGOR has determined these failure causes:wwwwwwwwwwwwwwwwwwwwwwwwwwww�

1. Execution reaches main.
Since the program was invoked as “cc1 -O fail.i”,
variable argv[2] is now “fail.i”.

2. Execution reaches combine instructions.
Since argv[2] was “fail.i”,
variable *first loop store insn→fld[1].rtx→fld[1].rtx→

fld[3].rtx→fld[1].rtx is now 〈new rtx def〉.

3. Execution reaches if then else cond (95th hit).
Since *first loop store insn→fld[1].rtx→fld[1].rtx→

fld[3].rtx→fld[1].rtx was 〈new rtx def〉,
variable link→fld[0].rtx→fld[0].rtx is now link.

4. Execution ends.
Since variable link→fld[0].rtx→fld[0].rtx was link,
the program now terminates with a SIGSEGV signal.
The program fails.

Total running time: 6 seconds

13/22

�

�

�

�

�

�

	

The GCC Cause-Effect Chain

After 59 tests, IGOR has determined these failure causes:wwwwwwwwwwwwwwwwwwwwwwwwwwww�

1. Execution reaches main.
Since the program was invoked as “cc1 -O fail.i”,
variable argv[2] is now “fail.i”.

2. Execution reaches combine instructions.
Since argv[2] was “fail.i”,
variable *first loop store insn→fld[1].rtx→fld[1].rtx→

fld[3].rtx→fld[1].rtx is now 〈new rtx def〉.

3. Execution reaches if then else cond (95th hit).
Since *first loop store insn→fld[1].rtx→fld[1].rtx→

fld[3].rtx→fld[1].rtx was 〈new rtx def〉,
variable link→fld[0].rtx→fld[0].rtx is now link.

4. Execution ends.
Since variable link→fld[0].rtx→fld[0].rtx was link,
the program now terminates with a SIGSEGV signal.
The program fails.

Total running time: 6 seconds (+ 90 minutes of GDB overhead)

14/22

�

�

�

�

�

�

	

Causes vs. Errors

Every failure is caused by some error. But where is the error?

Deduction finds errors—but to prove that some error causes a
given failure requires a fix.

Where’s the technology that fixes errors?

14/22

�

�

�

�

�

�

	

Causes vs. Errors

Every failure is caused by some error. But where is the error?

Deduction finds errors—but to prove that some error causes a
given failure requires a fix.

Where’s the technology that fixes errors?

Experimentation finds causes—but to prove that some failure
cause is an error requires a full specification.

Without specification, there are no errors—only surprises.

14/22

�

�

�

�

�

�

	

Causes vs. Errors

Every failure is caused by some error. But where is the error?

Deduction finds errors—but to prove that some error causes a
given failure requires a fix.

Where’s the technology that fixes errors?

Experimentation finds causes—but to prove that some failure
cause is an error requires a full specification.

Without specification, there are no errors—only surprises.

You don’t know you found the error until it’s fixed:

• Absence of failure proves that the error caused the failure

• The fixed version is (hopefully) correct, right, and true

14/22

�

�

�

�

�

�

	

Isolating the Error

We can narrow down the error by (manually) distinguishing
erroneous and non-erroneous causes.

14/22

�

�

�

�

�

�

	

Isolating the Error

We can narrow down the error by (manually) distinguishing
erroneous and non-erroneous causes.

14/22

�

�

�

�

�

�

	

Isolating the Error

We can narrow down the error by (manually) distinguishing
erroneous and non-erroneous causes.

14/22

�

�

�

�

�

�

	

Isolating the Error

We can narrow down the error by (manually) distinguishing
erroneous and non-erroneous causes.

14/22

�

�

�

�

�

�

	

Isolating the Error

We can narrow down the error by (manually) distinguishing
erroneous and non-erroneous causes.

15/22

�

�

�

�

�

�

	

Isolating the Error

We can narrow down the error by (manually) distinguishing
erroneous and non-erroneous causes.

Bad alias in distributive law in lines 4013–4019; fixed in 2.95.3(
+ (* a b) c

)
⇒
(
* (+ a c1)(+ b c2)

)
with c = c1 = c2

16/22

�

�

�

�

�

�

	

Challenges

How do we capture C program state accurately?
Does p point to something, and if so, to how many of them?

Today: Query memory allocation routines + heuristics
Future: Use program analysis, greater program state

16/22

�

�

�

�

�

�

	

Challenges

How do we capture C program state accurately?
Does p point to something, and if so, to how many of them?

Today: Query memory allocation routines + heuristics
Future: Use program analysis, greater program state

How do we determine relevant events?
Why focus on, say, combine instructions?

Today: Start with backtrace of failing run
Future: Focus on anomalies + transitions; user interaction

16/22

�

�

�

�

�

�

	

Challenges

How do we capture C program state accurately?
Does p point to something, and if so, to how many of them?

Today: Query memory allocation routines + heuristics
Future: Use program analysis, greater program state

How do we determine relevant events?
Why focus on, say, combine instructions?

Today: Start with backtrace of failing run
Future: Focus on anomalies + transitions; user interaction

How do we know a failure is the failure?
Can’t our changes just induce new failures?

Today: Outcome is “original” only if backtraces match
Future: Also match output, time, code coverage

16/22

�

�

�

�

�

�

	

Challenges

How do we capture C program state accurately?
Does p point to something, and if so, to how many of them?

Today: Query memory allocation routines + heuristics
Future: Use program analysis, greater program state

How do we determine relevant events?
Why focus on, say, combine instructions?

Today: Start with backtrace of failing run
Future: Focus on anomalies + transitions; user interaction

How do we know a failure is the failure?
Can’t our changes just induce new failures?

Today: Outcome is “original” only if backtraces match
Future: Also match output, time, code coverage

And finally: When does this actually work?

17/22

�

�

�

�

�

�

	

www.askigor.org

Submit buggy program
⇓

Specify invocations
⇓

Click on “Debug it”
⇓

Diagnosis comes
via e-mail

Up and running
since Summer 2003

·
56% “pinpoints the bug”
22% “helpful insights”

18/22

�

�

�

�

�

�

	

Delta Debugging Plug-Ins

19/22

�

�

�

�

�

�

	

Delta Debugging in one Run

In a reactive program, one single run may suffice:

Programmlauf
Benutzer Benutzer

19/22

�

�

�

�

�

�

	

Delta Debugging in one Run

In a reactive program, one single run may suffice:

Programmlauf
Benutzer Benutzer

Comparing program state at different moments in time again
reveals differences. . .

19/22

�

�

�

�

�

�

	

Delta Debugging in one Run

In a reactive program, one single run may suffice:

Programmlauf
Benutzer Benutzer

()->next
2220 Fehlerursache

Comparing program state at different moments in time again
reveals differences, which may be narrowed down to causes.

Applications: interactive programs, servers, device drivers. . .

20/22

�

�

�

�

�

�

	

Self-Repairing Programs

20/22

�

�

�

�

�

�

	

Self-Repairing Programs

20/22

�

�

�

�

�

�

	

Self-Repairing Programs

21/22

�

�

�

�

�

�

	

Past and Future

Past 20 years: deduction and observation techniques

Deduction:
0 runs

Observation:
1 run

21/22

�

�

�

�

�

�

	

Past and Future

Past 20 years: deduction and observation techniques

Deduction:
0 runs

Observation:
1 run

Induction:
n runs

Experimentation:
n controlled runs

Next 20 years: induction and experimentation?

22/22

�

�

�

�

�

�

	

Conclusion

✏ We may be able to guarantee the absence of errors—
but never the absence of surprises.

✏ Failure causes can be isolated automatically. . .

• if we have an automated test

• where at least one test case passes

✏ Systematic experimentation can significantly augment
“classical” program analysis.

✏ Via automation, debugging becomes a well-understood and
systematic discipline.

✏ Book “Why does my program fail?” (MK) in Fall 2004

http://www.askigor.org/

http://www.askigor.org/

22/22

�

�

�

�

�

�

	

Read More
Why does my Program Fail? A Guide to Automated Debugging. Morgan

Kaufmann Publishers, Fall 2004.

Isolating Cause-Effect Chains from Computer Programs. Proc. ACM SIGSOFT
International Symposium on the Foundations of Software Engineering
(FSE 2002), Charleston, Nov. 2002.

Isolating Failure-Inducing Thread Schedules. (w/ J.-D. Choi) Proc. ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA 2002), Rom,
July 2002.

Simplifying and Isolating Failure-Inducing Input. (w/ R. Hildebrandt) IEEE
Transactions on Software Engineering 28(2), February 2002, pp. 183–200.

Automated Debugging: Are We Close? IEEE Computer, Nov. 2001, pp. 26–31.

Visualizing Memory Graphs. (w/ T. Zimmermann) Proc. of the Dagstuhl Seminar
01211 ”‘Software Visualization”’, May 2001. LNCS 2269, pp. 191–204.

Yesterday, my program worked. Today, it does not. Why? Proc. ACM SIGSOFT
Conference (ESEC/FSE 1999), Toulouse, Sep. 1999, LNCS 1687, pp. 253–267.

http://www.askigor.org/

http://www.askigor.org/

22/22

�

�

�

�

�

�

	

About this Presentation

This presentation was created by Andreas Zeller, Professor of Computer Science at
Saarland University, Saarbrücken, Germany. Contact him at

http://www.st.cs.uni-sb.de/˜zeller/

This presentation, its source code, and additional material can be downloaded at

http://www.st.cs.uni-sb.de/papers/fse2002/

This presentation is licensed under the Creative Commons Attribution License. To
view a copy of this license, visit

http://creativecommons.org/licenses/by/1.0/

or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford,
California 94305, USA.

http://www.st.cs.uni-sb.de/~zeller/
http://www.st.cs.uni-sb.de/papers/fse2002/
http://creativecommons.org/licenses/by/1.0/

	A True Story
	Errors
	Causes
	Isolating Failure Causes
	What's going on in GCC?
	What's going on in GCC?
	What's going on in GCC?
	What's going on in GCC?
	What's going on in GCC?
	Tracing Data Flow
	Small Cause, Big Effect
	Relevant State Differences
	The GCC Memory Graph
	Structural Differences
	The Process in a Nutshell
	The Process in a Nutshell
	The Process in a Nutshell
	Relevant State Differences
	The GCC Cause-Effect Chain
	Causes vs. Errors
	Isolating the Error
	Isolating the Error
	Isolating the Error
	Isolating the Error
	Isolating the Error
	Isolating the Error
	Challenges
	www.askigor.org
	Delta Debugging Plug-Ins
	Delta Debugging in one Run
	Delta Debugging in one Run
	Delta Debugging in one Run
	Self-Repairing Programs
	Past and Future
	Past and Future
	Conclusion
	Read More
	About this Presentation

