
Mining Input Grammars from Dynamic Taints

Matthias Höschele
Saarland University

Saarland Informatics Campus
Saarbrücken, Germany

hoeschele@cs.uni-saarland.de

Andreas Zeller
Saarland University

Saarland Informatics Campus
Saarbrücken, Germany

zeller@cs.uni-saarland.de

ABSTRACT
Knowing which part of a program processes which parts of an in-
put can reveal the structure of the input as well as the structure of
the program. In a URL http://www.example.com/path/,
for instance, the protocol http, the host www.example.com,
and the path path would be handled by different functions and
stored in different variables. Given a set of sample inputs, we
use dynamic tainting to trace the data flow of each input character,
and aggregate those input fragments that would be handled by the
same function into lexical and syntactical entities. The result is a
context-free grammar that reflects valid input structure. In its eval-
uation, our AUTOGRAM prototype automatically produced readable
and structurally accurate grammars for inputs like URLs, spread-
sheets or configuration files. The resulting grammars not only allow
simple reverse engineering of input formats, but can also directly
serve as input for test generators.

CCS Concepts
•Software and its engineering→ Input / output; Dynamic anal-
ysis; •Theory of computation→ Grammars and context-free lan-
guages; •Social and professional topics→ Software reverse en-
gineering; •Applied computing→ Document analysis;

Keywords
Input formats; context-free grammars; dynamic tainting; fuzzing

1. INTRODUCTION
Since the invention of the Turing machine, a program is typi-

cally described as a machine that input and output a string of sym-
bols. The set of such strings that the machine accepts or produces
is called a language. The field of formal language theory long has
studied the structural aspects of such languages, using formal lan-
guages like regular expressions or context-free grammars to exactly
specify the language. The practical importance of such formal lan-
guages cannot be overstated. In programming languages, software
systems, computer networks, or general software development, for-
mal languages (and equivalent automata diagrams) are among the

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ASE 2016 Singapore
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 123-4567-24-567/08/06. . . $15.00

DOI: 10.475/123_4

http://user:password@www.google.com:80/command?
foo=bar&lorem=ipsum#fragment

http://www.guardian.co.uk/sports/worldcup#results
ftp://bob:12345@ftp.example.com/oss/debian7.iso

Figure 1: Sample URL inputs

URL ::= PROTOCOL ’://’ AUTHORITY PATH
[’?’ QUERY] [’#’ REF]

AUTHORITY ::= [USERINFO ’@’] HOST [’:’ PORT]
PROTOCOL ::= ’http’ | ’ftp’
USERINFO ::= /[a-z]+/ ’:’ /[a-z]+/
HOST ::= /[a-z.]+/
PORT ::= ’80’
PATH ::= /\/[a-z0-9.]*/
QUERY ::= ’foo=bar&lorem=ipsum’
REF ::= /[a-z]+/

Figure 2: Grammar derived by AUTOGRAM from
java.net.URL processing the inputs in Figure 1. Op-
tional parts are enclosed in brackets [. . .]; regular expression
shorthands are enclosed in /. . ./.

most frequently used methods to specify inputs and outputs, and
consequently, regular expressions and grammars are an essential
part of computer science curricula.

In this paper, we present a novel practical method that, given a
set of program runs with inputs, automatically produces a context-
free grammar that represents the language of the inputs seen. The
resulting grammar facilitates understanding of the input structure;
can serve as a base for automated test generation by feeding it into
a producer; and can be used by a computer to parse, decompose,
and analyze other inputs.

Here is an example. java.net.URL is a Java class that parses
a Uniform Resource Locator (URL) into its constituents. Assume a
program p that uses java.net.URL to parse the URLs given in
Figure 1. Given the program p and these inputs, our AUTOGRAM
prototype automatically produces the grammar shown in Figure 2,
which pretty accurately reflects the structure of the URLs processed.

How do we obtain this grammar? The key idea is to dynamically
observe how input is processed in a program. We instrument the
program with dynamic taints that during execution, tagging each
piece of data with the input fragment it comes from. Now, if some
function of the program processes only a part of the input, or if a
part or a value derived from it is stored in a variable, then this part
becomes a syntactical entity.

In our example, the method java.net.URL.set() eventu-
ally stores the URL components as parsed in the java.net.URL
class. Figure 3 shows the taints from the original input as its parts
are being passed as arguments to java.net.URL.set(). The

10.475/123_4

java.net.URL.set()
 param: protocol
 param: host
 param: port
 param: authority
 param: userinfo
 param: path
 param: query
 param: ref
 setField: protocol
 setField: host
 setField: port

 http://user:password@www.google.com:80/command?foo=bar&lorem=ipsum#fragment

 http•••user:password@www.google.com:80/command•foo=bar&lorem=ipsum•fragment
 http•••
 •••••••••••••••••••••www.google.com••
 ••••••••••••••••••••••••••••••••••••80•••••••••••••••••••••••••••••••••••••
 •••••••user:password@www.google.com:80•••••••••••••••••••••••••••••••••••••
 •••••••user:password•••
 ••••••••••••••••••••••••••••••••••••••/command•••••••••••••••••••••••••••••
 •••foo=bar&lorem=ipsum•••••••••
 •••fragment
 http•••
 •••••••••••••••••••••www.google.com••
 ••••••••••••••••••••••••••••••••••••80•••••••••••••••••••••••••••••••••••••

java.net.URL.set()

Figure 3: Dynamic tainting in AUTOGRAM. At the end of URL parsing, java.net.URL.set() is invoked with parameters such as
protocol = "http", host = "www.google.com", or port = 80. AUTOGRAM instruments the program such that each input
character is associated with its position in the input. This taint propagates to derived values and variables as the input is processed:
As java.net.URL.set() stores its arguments in object attributes, their taints propagate along.

PROTOCOL part of the URL ("http" and "ftp" in our inputs) is
passed as argument for the protocol parameter (and later stored
in an object attribute of the same name). This both identifies the
PROTOCOL part and gives the entity a readable and meaningful
name. The arguments host and port thus also lead to entities in
the grammar.

If a part processed by a function subsumes smaller parts, we in-
troduce a rule that composes the part out of its subparts. This is
how the AUTHORITY entity is composed of smaller parts such as
HOST or the optional USERINFO or PORT; see in Figure 3 how the
authority argument is just an aggregation of its smaller parts.
Not all entities decompose into smaller fragments, though; since
java.net.URL never stores or handles user and password sep-
arately, we retain a single entity userinfo; likewise, queries or
hostnames would not be further decomposed.

After assigning entities and their hierarchy, we use a regular ex-
pression learner to generalize multiple terminals into matching au-
tomata; thus, the HOST entity becomes a string of lowercase letters
and dots. Our approach thus results in grammars as shown in Fig-
ure 2—grammars with significant impact in software development:

1. The grammar gives humans immediate and detailed insights
into the structure of inputs, thereby facilitating reverse engi-
neering of input formats as well as manually writing valid
test inputs. To value this contribution, simply consider Fig-
ure 2 and assess how such knowledge, automatically pro-
duced, could facilitate reverse engineering.

2. The grammar can immediately be used by test generators to
produce high numbers of varied and valid inputs, thus facil-
itating automated robustness testing and fuzzing. While the
grammars produced may overgeneralize (a real host name,
for instance, may not contain two consecutive dots, which
is not reflected in our grammar), this is not a major concern
in test generation, as invalid inputs would be rejected by the
program—just as a compiler may reject syntactically valid,
but semantically invalid programs.

3. The grammar vastly simplifies the creation of parsing pro-
grams that decompose existing inputs into their constituents.
Note, though, that our grammar may overspecialize, and may
require human inspection and/or adjustment. For instance, in
Figure 2, the PORT and QUERY entities, for instance, reflect
the respective single values seen so far; these would be gen-
eralized either by providing additional sample inputs, or by
having a human adjust the respective rules.

The contributions of this paper are as follows. To the best of
our knowledge, the present work is the first to automatically de-
rive a context-free input structure from given inputs, making use
of a provided processing program to derive lexical and syntactical
structure as well as entity names. This is in contrast to related work
(Section 2), which does not make use of existing programs, and
therefore has to rely on additional lexical or structural hints.

Minor contributions include our method to associate processed
data with positions in the program input (Section 3) as well as our
grammar synthesis from jointly processed entities, including deriv-
ing entity names from variable and function identifiers (Section 4).
Section 5 evaluates our AUTOGRAM prototype in terms of accuracy
and completeness, where we use it to parse and produce yet unseen
inputs, respectively, on a set of common input formats. We close
with conclusion and future work in Section 6.

2. BACKGROUND
AUTOGRAM joins three areas: language induction, tracking input

origins, and data tainting.

Language Induction. Languages play a crucial role in software,
both in programs as in data. The Wikipedia page on file for-
mats lists more than 1,300 commonly used file formats—
which is likely only a small fraction of the many proprietary
data formats used by programs all across the world. Given
these many languages, it is only natural that researchers have
thought about how to reverse engineer languages from given
inputs. The field of language induction has provided a mul-
titude of approaches to infer languages and patterns from
(mostly natural language) text; for a comprehensive overview,
we recommend the textbook by de la Higuera [4]. The vast
majority of approaches, however, focuses on regular lan-
guages. The single exception is the work by Sakakibara [5,
6], which infers context-free grammars from given strings
if given “skeletons”, i.e. some form of structural hints. By
leveraging program executions, AUTOGRAM is able to con-
struct such hints and decompose the input into its structure.

Input Origins. To the best of our knowledge, relating input frag-
ments to code fragments that process it was first suggested by
Clause and Orso for their PENUMBRA work [3]. Their idea
is to track inputs as they propagate during execution, and
if some function fails, they would be able to identify those
inputs that the function uses and therefore would be respon-
sible for the failure. PENUMBRA computes such origins only

for specific variables, though; whereas AUTOGRAM tracks the
entire input as it is being processed.

Data Tainting. AUTOGRAM relies on dynamic tainting to identify
the origins of data fragments and track their flow during pro-
gram execution. Dynamic tainting allows us to precisely
identify which parts of a programs input are read, stored and
processed at any point in time.
The dynamic tainting as implemented in AUTOGRAM is in-
spired by Phosphor [1], a portable implementation of dy-
namic taint analysis based on bytecode instrumentation of all
classes including the Java API. In contrast to Phosphor, how-
ever, AUTOGRAM can taint arbitrary values (including primi-
tives and internalized strings) with string origin descriptions,
which consists of arbitrary long lists of input regions.

All in all, we are not aware of an approach that would use a map-
ping between input and locations processing them to derive struc-
tural input descriptions, let alone context-free grammars, as with
AUTOGRAM.

3. TAINTING INPUT CHARACTERS
The tainting framework of AUTOGRAM is inspired by the Phos-

phor [1] work. It is based on bytecode instrumentation that in
constrast to Phosphor does not modify method signatures and uses
separate shadow memory to store taint information for local vari-
ables, stack values and arrays. This separation and the usage of
an unmodified version of ASM [2] make it easier to combine it
with additional instrumentation and to make it interoperable with
uninstrumented code. Our implementation can also add shadow in-
formation to references. This special feature enables us to handle
features like Java String internalization that returns a canoni-
cal reference for equal String objects. The current implemen-
tation supports multiple taint sources based on system resources
like files or sockets and represents the taint information for each
taint source as bit sets. The implementation is currently restricted
to single threaded programs and leaves a lot of room for perfor-
mance optimization which was not the focus of this work. Since
the Java HotSpot VM does not permit the modification of certain
core classes using a Java agent, the Java API needs to be instru-
mented offline and included as bootstrap classes. All other instru-
mentation is applied by a Java agent. The agent supports caching
of previously instrumented classes to avoid unnecessary overhead
for repeated executions.

While running a program we use our taint analysis framework to
create a trace of events for each relevant program point:

Method Entry. Each method entry is logged, including the taint
information for all argument values.

Method Exit. Each method exit is logged, including the taint in-
formation of the return value.

Field Access. Each field access is logged with its access type (read-
/write) and the taint information of the value that was read-
/written.

Array Access. Each array access is logged with its access type
(read/write) and the taint information of the value that was
read/written.

The tracer uses a binary format that uses a compact representa-
tion of the program points based on unique ids that are assigned
to classes, methods and fields during instrumentation. Executions
with millions of calls therefore result in traces of a few Megabytes.
Since our tainting framework is not yet optimized, traced programs
run approximately 100 times slower.

http://user:password@www.google.com:80/
command?foo=bar&lorem=ipsum#fragment

http•••user:password@www.google.com:80/
command•foo=bar&lorem=ipsum•fragment

http

user:password@www.google.com:80

/command

foo=bar&lorem=ipsum

fragment

root

URL.set()

protocol

authority
command

query

fragment

Figure 4: Interval tree for the interval set from Figure 1

The resulting event traces allow us to reconstruct the dynamic
call tree as well as the input fragments that were processed dur-
ing a method call. Input fragments processed by callees as well
as field and array accesses are attributed to the initiating method.
To extract this information from the trace, we sequentially read the
events from the trace, and merge the input fragments of callees to
the caller on encountering the exit event of the callee.

4. SYNTHESIZING GRAMMARS

4.1 Identifying Entities
We now describe how we identify individual entities to produce

a grammar. Our method works along the following steps, each il-
lustrated by the URL example in Figure 1 and Figure 2.

Intervals. Since parsing breaks down the input to fragments of
decreasing size, this can be observed during program ex-
ecution. Induced by the dynamic call tree and the corre-
sponding taint information, we can derive the set of intervals
I ⊆ {[i, j]|i, j ∈ {0, . . . , n − 1}, i ≤ j} where n is the
number of characters of the input, such that for each interval
i ∈ I there is either

• a function that processes the input fragment correspond-
ing to the interval i, or
• a variable or parameter that stores the same input frag-

ment, or
• the input fragment or a value derived from it is returned

by a function.

Figure 1 shows the interval set I for our URL example. When
calling java.net.URL.set(), the protocol parame-
ter is associated with the leading "http" string, or the inter-
val i = [1, 4] of the original input. The URL.set() func-
tion processes all values given as parameters, and thus is as-
sociated with the intervals i1 = [1, 4] "http", i2 = [8, 44]
"user.../command", etc., as depicted in Figure 1.

Interval Trees. This set I of intervals also induces a tree T ′ of in-
tervals where the root r = [0, n − 1] and ∀i, j ∈ I , j is
a child of i if and only if j ⊂ i and ¬∃k ∈ I, j ⊂ k. In
Figure 1, the root r would be the entire input (shown on top);
its child would be the interval of java.net.URL.set(),
since it is no subset of another interval. The intervals of the
protocol, authority, path, query, and ref param-
eters would be the next direct children (Figure 4).

Computing Interval Trees. The interval tree T ′ can be computed
by applying depth first search to the dynamic call tree and
merging the sets of processed input fragments of all children

on exiting a node. Our goal is to derive a interval tree free
of conflicting overlaps T such that for all nodes i, j ∈ T ⊆
I, i ∩ j 6= ∅ ⇐⇒ i ⊂ j ∨ j ⊂ i. In the following, we call
such trees pure interval trees.
We assume the tree T corresponds to a parse tree such that
the leaves correspond to terminal symbols, and inner nodes
to productions of nonterminal symbols. T ′ does not neces-
sarily satisfy the additional constraints given for T . Parser
implementations that make use of lookahead for instance will
usually result in nodes with overlapping children.

From Intervals to Entities. We associate each interval with the
set of corresponding elements in the dynamic call tree (i.e.,
method invocations, parameters, return values, field acesses).
We can thus check if nodes are compatible and can be used
to derive productions for for the same nonterminal symbol.

Deriving Production Rules. To derive production rules we look
at all sets N of compatible nodes in the set of interval trees
that we computed from our samples. The children of each
node correspond to a sequence of terminal and nonterminal
symbols that can be a right-hand side of a production rule for
the nonterminal symbol derived from N .

4.2 Lookahead and Terminals
Most parsers require some form of lookahead to deterministi-

cally decide language membership and derive a parse tree based
on the next symbol to parse. As an example, consider a JSON
parser, where JsonParser.readStringInternal() reads
a string including the quotation marks and a line break character, as
in "foo"␔. The contained string is finally consumed in a second
method JsonParser.endCapture() including the terminat-
ing quotation mark due to lookahead, as in foo". Which method
should the final quotation mark be attributed to?

To resolve possible ambiguities, we apply a simple heuristic that
assumes left to right processing of the input. For each node n ∈ I
with children i = [il, ir], j = [jl, jr] ∈ I such that il < jl, we
derive a replacement interval i′ = [il, jl − 1]. We also recursively
remove all children c = [cl, cr] of i′ if c ⊆ j or replace them with
intervals c′ = [cl, jl − 1].

In our case, we attribute the terminating quotation mark to the
method JsonParser.readStringInternal(), which also
processes the mark after calling JsonParser.endCapture().
We can thus remove it from the JsonParser.endCapture()
interval corresponding to foo" to obtain the replacement that rep-
resents only the encompassed string foo.

4.3 Readable Entity Names
Since we are working with Java bytecode we do not have to re-

sort to derive random names for nonterminal symbols. Method and
field names can always be extracted from classes and provide good
candidates for descriptive symbol names. If the bytecode includes
debug symbols our approach is also able to derive symbol names
from method parameter names. AUTOGRAM implements simple
heuristics that define a order in which names of functions (includ-
ing constructors), parameters, and fields are considered.

Certain names like getChar or similar common functions can
also be ignored since they will be called for most characters and
offer limited help in finding descriptive symbol names. As fur-
ther improvement, we implemented simple heuristics for simplify-
ing candidate names by discarding common prefixes to names like
parse, read, skip, get, or set.

5. EVALUATION

5.1 Evaluation Setup
Now that we have described our approach, let us see how well it

works. We apply AUTOGRAM on a number of example programs,
learn their input grammars, and evaluate each grammar for accu-
racy and completeness.

5.1.1 Accuracy
Our first research question concerns the accuracy of the gener-

ated grammars: To which extent does the grammar overgeneral-
ize—that is, does it represent strings that would be rejected by the
programs at hand? To this end, we use the AUTOGRAM-produced
grammars as producers—that is, we start with the start symbol and
continuously expand nonterminals according to grammar rules.

The strings resulting from such production would then be fed
into the program in question, which would either accept or re-
ject it. Any rejection is a sign of overgeneralization: The string
"http://xyzzy.:80quux/" could be produced by Figure 2,
but would be rejected by the Java URL parser, since the path does
not begin with a ’/’ character.

For each production that requires a choice we pick alternatives
randomly (e.g. choosing between alternatives, number of repeti-
tions). For optional parts we also randomly choose to expand them,
however we additionally enforce a maximum depth at which we
prevent expansion of optional parts to ensure termination.

5.1.2 Completeness
Our second research question concerns the completeness of the

generated grammars: To which extent does the grammar overspec-
ify—that is, not contain strings that actually would be accepted by
the programs in question? To this end, we manually produced ref-
erence grammars for each test subject that would serve as ground
truth for the respective input language.

We then used the reference grammars as producers that would
create arbitrary strings; these would then be parsed by the gram-
mars produced by AUTOGRAM. (To this end, we adapted the gram-
mars produced by AUTOGRAM into a semantically equivalent LL(1)
form that could be directly used by a parser generator). If a AUTO-
GRAM grammar would reject a string produced by the reference
grammar, this would have been a sign of the AUTOGRAM grammar
being too specific.

5.2 Subjects and Results
Table 1 summarizes our evaluation subjects. Our subjects in-

clude parts of the Java Standard API that are used to process URLs
and property files. The other subjects are open source projects that
implement support for CSV, INI and JSON formats. For each sub-
ject, we would use the reference grammar to produce 1,000 sample
inputs, which then would be fed into the program to produce a AU-
TOGRAM grammar. The resulting grammar would then be subject
to accuracy and completeness evaluation, as described above. Each
subject is described in a separate section.

5.2.1 URLs
In Figure 5, we show the AUTOGRAM grammar obtained from the

java.net.URL class after feeding the parser with 1,000 random
samples. This grammar is more general than the one in Figure 2
that was obtained from only the three samples listed in Figure 1.

1https://commons.apache.org/proper/commons-csv/
2http://ini4j.sourceforge.net/
3https://github.com/ralfstx/minimal-json

Table 1: Test Subjects
Subject Data Format Format Purpose
java.lang.URL URL Uniform Resource Locators; used as Web addresses
Apache Commons CSV1 CSV Comma-separated values; used in spreadsheets
INI4J2 INI Configuration files consisting of sections with key/value pairs
Minimal JSON3 JSON Human-readable text to transmit nested data objects with attributes and values

Note that the generalization occurs much more at the lexical rather
than at the syntactical level; an effect we have frequently observed
in our subjects.

In our experiment, the AUTOGRAM grammar accepted all in-
puts produced by the reference grammar; it is thus 100% com-
plete. However, it does overgeneralize and thus is not entirely ac-
curate: Of 10,000 strings it produces, 1,772 are rejected by the
java.net.URL parser; all because of the URL containing a port
number, but the path not starting with ’/’—the same overgeneral-
ization as already detailed in Section 5.1.1. We thus compute its ac-
curacy as (10, 000− 1, 772)/10, 000 = 8, 228/10, 000 = 82.3%.

5.2.2 Comma-Separated Values
Our next subject is the simplest in terms of grammars, namely

comma-separated values as processed by Apache Commons CSV.
Comma-separated values are frequently used as data exchange for-
mat, notably between spreadsheet applications.

The AUTOGRAM grammar inferred from Apache Commons CSV
is shown in Figure 6; we see that a CSV file consists of sequences
of record values (strings) separated by either commas or newlines.
Since Apache Commons CSV performs no further processing of the
strings read, AUTOGRAM leaves them as general as they are. Of
note is that in the grammar, a TOKEN is preceded by a newline or
a comma; a human-written grammar would make these separators
between tokens and place them after a token and assign the new-
line symbol to records instead of tokens. In terms of accuracy and
completeness, the AUTOGRAM grammar scores 100% in both.

5.2.3 INI Configuration Files
INI files have a similar key/value format as Java property files;

they are mostly used on the Windows platform to store configu-
ration parameters. Applied on the INI4J framework, AUTOGRAM
returns the grammar in Figure 7. We see that on top of key/-
value options, INI files also have section titles in square brackets
(SECTIONLINE) as well as comments (COMMENT) starting with
semicolons ’;’.

Of special note is the LINESKIPCOMMENT line, which is un-
necessarily complex due to whitespace processing. In our future
work (Section 6), we want to derive general lexical rules such as
all whitespace between items being skipped, making the grammar
both more general and simpler. The learned grammar does not de-

URL ::= PROTOCOL ’://’ AUTHORITY
[PATH] [’?’ QUERY] [’#’ REF]

PROTOCOL ::= ’http’ | ’ftp’
AUTHORITY ::= [USERINFO ’@’] HOST [’:’ PORT]
USERINFO ::= /[a-zA-Z0-9:]+/
HOST ::= /[a-zA-Z0-9.]/
PORT ::= /[0-9]+/
PATH ::= /[a-zA-Z0-9.,\/]+/
QUERY ::= /[a-zA-Z0-9&=]+/
REF ::= /[a-zA-Z0-9]+/

Figure 5: Generalized URL grammar derived by AUTOGRAM

CSV ::= RECORD+
RECORD ::= TOKEN+
TOKEN ::= /[\n,]*/ RECORDVALUE
RECORDVALUE ::= /[a-zA-Z0-9.;\/]+/

Figure 6: CSV grammar derived by AUTOGRAM.

INI ::= LINESKIPCOMMENT+
LINESKIPCOMMENT ::=

[(/[\t]*/
(COMMENT | SECTIONLINE | OPTION)

/[\t]*/ ’\n’)+]
/[\t]*/

(COMMENT | SECTIONLINE | OPTION)
/[\t]*/ [’\n’]

COMMENT ::= ’;’ /[a-zA-Z0-9_]+/
OPTION ::= KEY /[\t]*/ ’=’ /[\t]*/ VALUE
KEY ::= /[a-zA-Z0-9_]+/
VALUE ::= /[a-zA-Z0-9_]+/
SECTIONLINE ::=

’[’ /[\t]*/ SECTION /[\t]*/ ’]’
SECTION ::= /[a-zA-Z0-9]+/

Figure 7: INI configuration grammar derived by AUTOGRAM.

scribe an INI file as a sequence of sections, though, and thus allows
options at the beginning of a file without defining a section first.
This is due to reading options, sections and comments in a single
loop, making the grammar only 64.6% complete.

5.2.4 JSON Objects
Strictly speaking, the grammars of all our past examples could

also have been expressed by an (albeit pretty complex) regular ex-
pression. That is because they do not contain recursive structures,
which can only be properly expressed with context-free grammars.
JSON (JavaScript Object Notation) is a data interchange format for
primitive and structured objects commonly used on JavaScript plat-
forms, but available for several languages. The Minimal JSON li-
brary provides central JSON parsing and processing capabilities for
Java programs.

In Figure 8, we see the grammar as inferred from AUTOGRAM
through dynamic analysis of Minimal JSON. We can clearly dis-
tinguish the individual value types, from primitive types (TRUE,
FALSE, NUMBER, . . .) to recursively structured types (ARRAY,
JSONOBJECT). Of special note is JSONOBJECT, in which a hu-
man grammar designer would probably factor out key/value pairs
into a separate entity, and thus simplify the grammar. However,
the rule reflects the way Minimal JSON processes JSON objects,
namely in a single loop, appending key/value attributes to an object
as it sees them. In our future work, we will borrow from existing
language learners to identify structural repetitions and factor these
out into (anonymous) entities. In our experiments, the JSON gram-
mar proved to be 100% accurate and complete.

JSON ::= WHITESPACE VALUE WHITESPACE
WHITESPACE ::= /[\n\t]+/
VALUE ::= JSONOBJECT | ARRAY | STRINGVALUE |

TRUE | FALSE | NULL | NUMBER
TRUE ::= ’true’
FALSE ::= ’false’
NULL ::= ’null’
NUMBER ::= [’-’] /[0-9]+/
STRINGVALUE ::= ’"’ INTERNALSTRING ’"’
INTERNALSTRING ::= /[a-zA-Z0-9]+/
ARRAY ::=
’[’
[WHITESPACE]
[VALUE [WHITESPACE]
[’,’ [WHITESPACE] VALUE [WHITESPACE]]+]

’]’
JSONOBJECT ::=
’{’

[WHITESPACE]
[STRINGVALUE [WHITESPACE] ’:’ [WHITESPACE]
VALUE [WHITESPACE]

[’,’ [WHITESPACE]
STRINGVALUE [WHITESPACE] ’:’ [WHITESPACE]

VALUE [WHITESPACE]]
+]

’}’

Figure 8: JSON grammar derived by AUTOGRAM.

Table 2: Evaluation Results
Subject Accuracy Completeness
java.lang.URL 82.3% 100.0%
Apache Commons CSV 100.0% 100.0%
INI4J 64.6% 100.0%
Minimal JSON 100.0% 100.0%

5.3 Evaluation Summary
All our results regarding accuracy and completeness are sum-

marized in Table 2. Altogether, the grammars produced by AU-
TOGRAM proved to be 100% complete: They accepted all strings
produced by the reference parsers. This indicates a high usefulness
of the resulting grammars for reverse engineering purposes.

In our evaluation setting, grammars inferred by AUTOGRAM all
accepted 100% of syntactically legal inputs.

On the other hand, not all parsers were 100% accurate, indicat-
ing that it may be necessary for humans to make adjustments be-
fore the grammars would produce syntactically valid outputs only.
However, the main purpose of such outputs would typically be ro-
busteness testing; and if a certain percentage of inputs would be
filtered out as invalid by the processing program, that would only
hurt performance, but not functionality.

In our evaluation setting, most grammars inferred by AUTOGRAM
produced 100% syntactically legal outputs.

Note, though, that there also are theoretical limits to what a
grammar can achieve. While it would be desirable to extract gram-
mars that would be both 100% complete and accurate, a grammar
may have to be Turing complete to achieve these levels. Descrip-
tions of what makes a valid program, for instance, are not only
governed by the program syntax, but also by semantical rules that

can only be expressed in a Turing complete formalism—which typ-
ically would be the source code of the compiler or interpreter. As
of now, AUTOGRAM only aims for extracting syntactical structure;
and we are already very satisfied with its results.

5.4 Threats to Validity
Our evaluation is subject to several threats to validity. The most

important is external validity. While we have evaluated AUTOGRAM
on a small set of parsers for commonly used file formats, we make
no claim that these results would generalize; rather, they are to be
seen as indication for the potential usefulness of an approach such
as AUTOGRAM. We see several opportunities for improvement and
future research; while we regard AUTOGRAM as an achievement,
it is but the first step into an exciting and wide field of program-
supported grammar inference.

In our evaluation, we trained all parsing subjects from randomly
generated samples. These may or may not reflect the variability
seen in real-world samples and thus cannot be seen as representa-
tive. Hence, training AUTOGRAM from real-world samples is likely
to result in different accuracy and completeness measures, in par-
ticular when the training set is small.

6. CONCLUSION
The AUTOGRAM approach provides a simple means to reverse

engineer the structure of program inputs to context-free grammars,
by associating parts of a program with the parts of the input that
they process. The potential of this approach are clear, ranging
from better understanding of inputs over better testing to creation
of parsing programs, and generally opening a new field of program-
supported grammar inference. Our main future work will be using
the inferred grammars for systematic fuzz testing, bypassing lexical
and syntactical checks to deep into the program.
AUTOGRAM and all benchmarks presented in this work are available
for evaluation purposes. For details, see our Web site:

https://www.st.cs.uni-saarland.de/models/autogram/

Acknowledgments. We thank the anonymous reviewers for their
constructive comments. This work is supported by the European
Research Council, Grant “SPECMATE”.

7. REFERENCES
[1] J. Bell and G. Kaiser. Phosphor: Illuminating dynamic data

flow in commodity JVMs. In ACM SIGPLAN Notices,
volume 49, pages 83–101. ACM, 2014.

[2] E. Bruneton, R. Lenglet, and T. Coupaye. ASM: a code
manipulation tool to implement adaptable systems. Adaptable
and extensible component systems, 30:19, 2002.

[3] J. Clause and A. Orso. Penumbra: automatically identifying
failure-relevant inputs using dynamic tainting. In Proceedings
of the eighteenth international symposium on Software testing
and analysis, pages 249–260. ACM, 2009.

[4] C. de la Higuera. Grammatical Inference: Learning Automata
and Grammars. Cambridge University Press, New York, NY,
USA, 2010.

[5] Y. Sakakibara. Efficient learning of context-free grammars
from positive structural examples. Information and
Computation, 97(1):23–60, 1992.

[6] Y. Sakakibara. Learning context-free grammars using tabular
representations. Pattern Recogn., 38(9):1372–1383, Sept.
2005.

https://www.st.cs.uni-saarland.de/models/autogram/

	Introduction
	Background
	Tainting Input Characters
	Synthesizing Grammars
	Identifying Entities
	Lookahead and Terminals
	Readable Entity Names

	Evaluation
	Evaluation Setup
	Accuracy
	Completeness

	Subjects and Results
	URLs
	Comma-Separated Values
	INI Configuration Files
	JSON Objects

	Evaluation Summary
	Threats to Validity

	Conclusion
	References

