
Andreas Zeller

Isolating and Locating
Cause-Effect Chains

2

double bug(double z[], int n) {
 int i, j;

 i = 0;
 for (j = 0; j < n; j++) {
 i = i + j + 1;
 z[i] = z[i] * (z[0] + 1.0);
 }
 return z[n];
}

bug.c

3

What is the cause
of this failure?

1

2

What do we do now?

3

4

✘

1. The programmer creates a
defect – an error in the code.

2. When executed, the defect
creates an infection – an
error in the state.

3. The infection propagates.

4. The infection causes a failure.

From Defect to Failure

✘

✘

✘

✘ ✘

Variables

This infection chain must be
traced back – and broken.

t

5

Tracing Infections

✘

• For every infection, we must find the earlier
infection that causes it.

• Program analysis tells us possible causes

6

Tracing Infections

✘

4

5

6

Real Code

• Opaque – e.g. third-party code

• Parallel – threads and processes

• Distributed – across multiple machines

• Dynamic – e.g. reflection in Java

• Multilingual – say, Python + C + SQL

7

Obscure Code

8

struct foo {
	 int tp, len;
	 union {
	 char c[1];
	 int i[1];
 struct foo *p[1];
}}

tp len c[0] c[1] c[2] …tp len i[0] i[1]tp len p[0]

Isolating Input

9

Input

✔

Input

✘

Difference
causes
failure

7

And even if we know
everything, there still is
code which is almost
impossible to analyze. In
C, for instance, only the
programmer knows how
memory is structured;
there is no general way for
static analysis to find this
out

8

In the last lecture, we have
seen delta debugging on
input.

9

10

✘

Isolating States

✘

Variables

t

✘

Variables

✔

Difference
causes
failure

Comparing States

11

• What is a program state, anyway?

• How can we compare states?

• How can we narrow down differences?

12

A Sample Program

sample 9 8 7$
Output: 7 8 9

sample 11 14$
Output: 0 11

Where is the defect
which causes this failure?

Now let’s take a deeper
view. If a program is a
succession of states, can’t
we treat each state as an
input to the remainder of
the run?

10

11

Let’s look at a simpler
example first.

12

13

int main(int argc, char *argv[])
{
 int *a;

 // Input array
 a = (int *)malloc((argc - 1) * sizeof(int));
 for (int i = 0; i < argc - 1; i++)
 a[i] = atoi(argv[i + 1]);

 // Sort array
 shell_sort(a, argc);

 // Output array
 printf("Output: ");
 for (int i = 0; i < argc - 1; i++)
 printf("%d ", a[i]);
 printf("\n");

 free(a);
 return 0;
}

A sample state

• We can access the entire state via the
debugger:

1. List all base variables

2. Expand all references…

3. …until a fixpoint is found

14

Sample States

15

13/28

�

�

�

�

�

�

�

Sample States

At the beginning of shell_sort , we obtain these states:

Variable Value
in r! in r"

argc 4 5
argv[0] "./sample" "./sample"
argv[1] "9" "11"
argv[2] "8" "14"
argv[3] "7" 0x0 (NIL)
i� 1073834752 1073834752
j 1074077312 1074077312
h 1961 1961
size 4 3

Variable Value
in r! in r"

i 3 2
a[0] 9 11
a[1] 8 14
a[2] 7 0
a[3] 1961 1961
a�[0] 9 11
a�[1] 8 14
a�[2] 7 0
a�[3] 1961 1961

This state difference is both effect (of the input) as well as
cause (for the failure).

at shell_sort()

13

14

15

Narrowing State Diffs

16

16/28

�

�

�

�

�

�

�

Narrowing Down State

Delta Debugging narrows down failure-inducing state changes:

� = δ is applied, � = δ is not applied

a�[0] a[0] a�[1] a[1] a�[2] a[2] argc argv[1] argv[2] argv[3] i size Output Test

1 � � � � � � � � � � � � 7 8 9 !

2 � � � � � � � � � � � � 0 11 "

3 � � � � � � � � � � � � 0 11 14 "

4 � � � � � � � � � � � � 7 11 14
5 � � � � � � � � � � � � 0 9 14 "

6 � � � � � � � � � � � � 7 9 14
7 � � � � � � � � � � � � 0 8 9 "

8 � � � � � � � � � � � � 0 8 9 "

Result �

Conclusion: a�[2] being 0 (instead of 7) causes the failure.

Complex State

17

• Accessing the state as a table is not enough:

• References are not handled

• Aliases are not handled

• We need a richer representation

A Memory Graph

18

<Root>

0x8099ae8

a

3

i

4

argc

0xbffff5a4

argv

1073834752

i’

1074077312

j

1961

h

0x8099ae8

a’

4

size

[...]

()[0..3]

[...]

()[0..4]()[0..3]

9

()[0]

8

()[1]

7

()[2]

1961

()[3]

0xbffff71a

()[0]

0xbffff749

()[1]

0xbffff74c

()[2]

0xbffff74f

()[3]

0x0

()[4]

"./sample"

()[0..]

"9"

()[0..]

"8"

()[0..]

"7"

()[0..]

<Root>

0x8099ae8

a

3

i

4

argc

0xbffff5a4

argv

1073834752

i’

1074077312

j

1961

h

0x8099ae8

a’

4

size

[...]

()[0..3]

[...]

()[0..4]()[0..3]

9

()[0]

8

()[1]

7

()[2]

1961

()[3]

0xbffff71a

()[0]

0xbffff749

()[1]

0xbffff74c

()[2]

0xbffff74f

()[3]

0x0

()[4]

"./sample"

()[0..]

"9"

()[0..]

"8"

()[0..]

"7"

()[0..]

16

17

18

19

<Root>

0x8099ae8

a

3

i

4

argc

0xbffff5a4

argv

1073834752

i’

1074077312

j

1961

h

0x8099ae8

a’

4

size

[...]

()[0..3]

[...]

()[0..4]()[0..3]

9

()[0]

8

()[1]

7

()[2]

1961

()[3]

0xbffff71a

()[0]

0xbffff749

()[1]

0xbffff74c

()[2]

0xbffff74f

()[3]

0x0

()[4]

"./sample"

()[0..]

"9"

()[0..]

"8"

()[0..]

"7"

()[0..]

20

Memory Graph Edge Operation
+apply(name:string=""): string

Vertex
+value: string
+type: string
+address: void *

0..*

0..* 1

2

0..*

root

1

1

Structure

<root> 0x1234 7
p *()

Construction

21

• Start with <root> node and base variables

• Base variables are on the stack and at fixed
locations

• Expand all references, checking for aliases…

• …until all accessible variables are unfolded

19

20

21

Unfolding Memory

• Any variable: make new node

• Structures: unfold all members

• Arrays: unfold all elements

• Pointers: unfold object being pointed to

• Does p point to something? And how many?

22

<Root>

0

i

10

j

0

h

0x8049880

a

3

size

0x8049880

a

2

i

3

argc

0xbffff7a4

argv

[...]

(()[0] @ 3) (()[0] @ 3)

[...]

(()[0] @ 4)

11

()[0]

14

()[1]

0

()[2]

0xbffff8e7

()[0]

0xbffff90e

()[1]

0xbffff911

()[2]

0x0

()[3]

"sample"

()[0..]

"11"

()[0..]

"14"

()[0..]

Comparing States

23

<Root>

0x8099ae8

a

3

i

4

argc

0xbffff5a4

argv

1073834752

i’

1074077312

j

1961

h

0x8099ae8

a’

4

size

[...]

()[0..3]

[...]

()[0..4]()[0..3]

9

()[0]

8

()[1]

7

()[2]

1961

()[3]

0xbffff71a

()[0]

0xbffff749

()[1]

0xbffff74c

()[2]

0xbffff74f

()[3]

0x0

()[4]

"./sample"

()[0..]

"9"

()[0..]

"8"

()[0..]

"7"

()[0..]

passing run

failing run

Comparing States

24

• Basic idea: compute common subgraph

• Any node that is not part of the common
subgraph becomes a difference

• Applying a difference means to create or
delete nodes – and adjust references

• All this is done within GDB

22

23

24

Applying Diffs

25

21/28

�

�

�

�

�

�

�

Structural Differences

Igor can compute structural graph differences:
δ15 creates a variable, δ20 deletes another

r!

r" ()->next ()->nextlist

14 18 22

()->next

15

()->next ()->nextlist

14 18 22

()->next

20

δ15−−→
()->next ()->nextlist

14 18 22

()->next

15

()->next ()->nextlist

14 18 22

15

()->next

()->next

20

δ20

� δ20

�

()->next ()->nextlist

14 18 22

()->next

15

()->nextlist

14 18 22

()->next

20

δ15−−→
()->next ()->nextlist

14 18 22

()->next

15

()->next

list

14 18 22

15

()->next

()->next

20

26

27

Sane stateInfected state

Causes in State

The difference
causes GCC to crash!

25

State of the GNU compiler
(GCC)
42991 vertices
44290 edges - and 1 is
wrong :-)
An actual GCC execution
has millions of these
states.

26

27

28

Sane stateInfected state

Search in Space

Mixed state

✔✘

Test ?

29

Search in Space

0

100

200

300

400

500

600

700

800

900

0 5 10 15 20 25 30 35 40 45

D
el

ta
s

Tests executed

Delta Debugging Log

cpass
cfail

30

Search in Space

0

100

200

300

400

500

600

700

800

900

0 5 10 15 20 25 30 35 40 45

D
el

ta
s

Tests executed

Delta Debugging Log

cpass
cfail

first_loop_store_insn→fld[1].rtx→fld[1].rtx→
fld[3].rtx→fld[1].rtx→code == PLUS

28

29

30

31

Sane stateInfected state

Search in Space

Mixed state

✔✘

Test ?

32

Sane stateInfected state

Search in Space

Mixed state

✔✘

Test ?

<PLUS node>

33

Passing runFailing run

Search in Time

t

<PLUS node>

<PLUS node>

31

32

33

34

Passing runFailing run

Search in Time

t

<PLUS node>

<PLUS node>

link→fld[0].rtx→fld[0].rtx == link

Passing runFailing run

t

<PLUS node>

<Tree cycle>

<PLUS node>

Search in Time

35

Passing runFailing run

t

<PLUS node>

<Tree cycle>

Transition from PLUS to cycle

<PLUS node>

Search in Time

36

34

35

36

Transitions

A cause transition occurs when a new variable
begins to be a failure cause:

• PLUS no longer causes the failure…

• …but the tree cycle does!

Can be narrowed down by binary search

37

38

Why Transitions?

• Each failure cause in the program state is
caused by some statement

• These statements are executed
at cause transitions

• Cause transitions thus are
statements that cause the failure!

Potential Fixes

• Each cause transition implies a fix to make
the failure no longer occur – just prohibit
the transition

• A cause transition is more than a potential
fix – it may be “the” defect itself

39

37

38

39

All GCC Transitions

40

Location Cause transition to variable

0 �Start� argv[3]
1 toplev.c:4755 name
2 toplev.c:2909 dump base name
3 c-lex.c:187 finput→ IO buf base
4 c-lex.c:1213 nextchar
5 c-lex.c:1213 yyssa[41]
6 c-typeck.c:3615 yyssa[42]
7 c-lex.c:1213 last insn→fld[1].rtx

→fld[1].rtx→fld[3].rtx
→fld[1].rtx.code

8 c-decl.c:1213 sequence result[2]
→fld[0].rtvec
→elem[0].rtx→fld[1].rtx
→fld[1].rtx→fld[1].rtx
→fld[1].rtx→fld[1].rtx
→fld[1].rtx→fld[1].rtx
→fld[3].rtx→fld[1].rtx.code

9 combine.c:4271 x→fld[0].rtx→fld[0].rtx

Table 3: Cause transitions in GCC

hold an additional node (fld[1].rtx.code is PLUS) in
the failing run (Transitions 7–8). Thus, the + in the input has
caused a PLUS node, created at Transition 8.

4. In Transition 9, the failure cause moves from the additional

PLUS node to a cycle in the abstract syntax tree. We have

x→fld[0].rtx→fld[0].rtx = x

meaning that the node at *x is its own grandchild! This cy-
cle ultimately causes an endless recursion and thus the GCC

crash.

In our earlier work [15], we had also identified the cycle as the ulti-

mate failure cause, and assumed that an experienced GCC program-

mer would be able to distinguish infections from non-infections.

Therefore, an experienced programmer would have immediately

focused on the GCC cycle.

Under the assumption that cause transitions indicate defects, though,

a less experienced programmer could start his investigation at the

listed cause transitions. At combine.c:4271, the location of the last

transition, we find a single statement

return x;

This line is not likely to be a defect. Let us take a look at the

direct origin of x, in combine.c:4013–4019, listed in Figure ?? on
page ??.

This place is where the infection originates: The call to the func-

tion apply distributive law() is wrong. This function

transforms code using the rule

(MULT (PLUS a b) c) ⇒ (PLUS (MULT a c1)(MULT b c2))

Unfortunately, in the apply distributive law() call in Fig-
ure ??, c1 and c2 share a common grandchild (the macro XEXP(x, 1)
translates into x→fld[1].rtx), which leads to the cycle in the
abstract syntax tree. To fix the problem, one should call the func-

tion with a copy of the grandchild—and this is how the error was

fixed in GCC 2.95.3.

At this point, one may wonder why cause transitions did not sin-

gle out the call to apply distributive law() as a cause
transition. The answer is simple: This piece of code is executed

only during the failing run. Therefore, we have no state to compare

case MULT:
/* If we have (mult (plus A B) C), apply the distributive

law and then the inverse distributive law to see if
things simplify. This occurs mostly in addresses,
often when unrolling loops. */

if (GET_CODE (XEXP (x, 0)) == PLUS)
{
x = apply_distributive_law
(gen_binary (PLUS, mode,

gen_binary (MULT, mode,
XEXP (XEXP (x, 0), 0),

XEXP (x, 1)),
gen_binary (MULT, mode,

XEXP (XEXP (x, 0), 1),
XEXP (x, 1))));

if (GET_CODE (x) != MULT)
return x;

}
break;

Figure 6: The GCC defect

against, and therefore, we cannot narrow down the cause transition

any further. Line 4271, however, has been executed in both runs,

and thus we are able to isolate the failure-inducing state at this lo-

cation.

Overall, to locate the defect, the programmer had to follow just

one backwards dependency from the last isolated cause transition.

In numbers, this translates into just 2 lines out of 338,000 lines

of GCC code. Even if we assume the programmer examines all

9 transitions and all direct dependencies, the effort to locate the

GCC defect is minimal.

6. COMPLEXITY AND OTHER ISSUES
Finding causes and cause transitions by automated experimentation

can require a large number of test runs:

Searching in space. In the best case, Delta Debugging needs 2s log k

test runs to isolate s failure-inducing variables from k state

differences. The (pathological) worst case is k2 + 3k; In

practice, though, Delta Debugging is much more logarithmic

than linear.

Searching in time. This is a simple binary search over n program

steps, repeated for each cause transition. For m cause transi-

tions, we thus need m log n runs of Delta Debugging.2

Since applications can have a large number of fine-grained cause

transitions, a practical implementation would simply limit the num-

ber of cause transitions to be sought, or just run as long as the avail-

able execution time permits.

Other practical issues we faced in our implementation, in partic-

ular for the GCC case study, included:

Accessing state. We currently instrument the GNU debugger (GDB)

to access the state, which is painfully slow: The entire GCC

2Unfortunately, a pure binary search does not always suffice. In a
cause-effect chain, all reported causes must cause all later causes as
well as the failure. This can lead to tricky situations: Assume we
have isolated a cause c1 and a later cause c2, and these two form a
cause-effect chain, meaning that c1 causes c2 as well as the failure.
Now, cts isolates a new cause c between c1 and c2; again, c causes
all later causes (c2) as well as the failure. But does c1 cause c, too?
In case c1 has no effect on c, we have to re-isolate c1 such that the
new c1 causes c as well as c2.

if (GET_CODE (XEXP (x, 0)) == PLUS {
 x = apply_distributive_law
	 (gen_binary (PLUS, mode,
 gen_binary (MULT, mode,
 XEXP (XEXP (x, 0), 0),
 XEXP (x, 1)),
	 gen_binary (MULT, mode,
	 XEXP (XEXP (x, 0), 1),
 XEXP (x, 1))));

 if (GET_CODE (x) != MULT)
	 return x;
}

41

combine.c:4279

Should be copy_rtx()

42

Dow
nlo

ad
 at

AskI
go

r.o
rg

40

41

42

43

Open Issues

• How do we capture an accurate state?

• How do we ensure the cause is valid?

• Where does a state end?

• What is the cost?

44

Concepts

Delta Debugging on program states isolates
a cause-effect chain through the run

Use memory graphs to extract and compare
program states

Demanding, yet effective technique

45

Concepts

Cause transitions pinpoint failure causes in
the program code

Failure-causing statements are potential fixes
(and frequently defects, too)

Even more demanding, yet effective
technique

43

44

45

46

This work is licensed under the Creative Commons Attribution License. To view a copy of this license, visit

http://creativecommons.org/licenses/by/1.0

or send a letter to Creative Commons, 559 Abbott Way, Stanford, California 94305, USA.

46

