
Andreas Zeller

System
Assertions

System Invariants

Some properties of a program must hold
over the entire run:

• must not access data of other processes

• must handle mathematical exceptions

• must not exceed its privileges

Typically checked by hardware and OS

2

Memory Invariants

Even within a single process, some invariants
must hold over the entire run

• code integrity

• data integrity

This is a major issue in C and C++

3

1

2

3

Heap Misuse

4

s = malloc(30)

s

free(s)

t = malloc(20)

t

s[10] = ‘b’

b

free(s)

strcpy(t, “hello”)

free_list

hello

Heap Assertions

5

The GNU C runtime library provides a simple
check against common errors:

$ MALLOC_CHECK_=2 myprogram myargs
free() called on area that was already free'd()
Aborted (core dumped)
$ _

FREE

Heap Assertions

6

s = malloc(30) s

free(s)

free(s)
USED

free() called on area that was already free'd()
Aborted (core dumped)

4

5

6

Array Assertions

7

The Electric Fence library checks for array
overflows:

$ gcc -g -o sample-with-efence sample.c -lefence
$./sample-with-efence 11 14
Electric Fence 2.1
Segmentation fault (core dumped)
$ _

Array Assertions

8

s = malloc(30) s
s[30] = ‘x’

Segmentation fault (core dumped)

MMU detects accesses

x

Memory Assertions

9

The Valgrind tool checks all memory accesses:

Valgrind works as an interpreter for x86 code

$ valgrind sample 11 14
Invalid read of size 4
 at 0x804851F: shell_sort (sample.c:18)
 by 0x8048646: main (sample.c:35)
 by 0x40220A50: __libc_start_main (in /lib/libc.so)
 by 0x80483D0: (within /home/zeller/sample)

7

8

9

Valgrind Checks
‣ Use of uninitialized memory

‣ Accessing free’d memory

‣ Accessing memory beyond malloc’d block

‣ Accessing inappropriate stack areas

‣ Memory leaks: allocated area is not free’d

‣ Passing uninitialized memory to system calls

10

Shadow Memory
• V-bit set = corresponding bit is initialized

• A-bit set = corresponding byte is accessible

11

a[0] = 11 a[1] = 14 a[2] = ?

A-bits

V-bits

Variables

Address 0x40EE9024 0x40EE9028 0x40EE902C

V-Bits

• When a bit is first written, its V-bit is set

• Simple read accesses to uninitialized
memory do not result in warnings:

12

 struct S { int x; char c; };
 struct S s1, s2;
 s1.x = 42;
 s1.c = 'z';
 s2 = s1;

5 bytes initialized
8 bytes copied (no warning)

10

11

12

V-Bits Warnings

Reading uninitialized data causes a warning if

• a value is used to generate an address

• a control flow decision is to be made

• a value is passed to a system call

13

A-Bits

• When the program starts, all global data is
marked “accessible” (= A-bits are set)

• malloc() sets A-bits for the area returned;
free() clears them

• Local variables are “accessible” on entry
and “non-accessible” on exit

• Accessing “non-accessible” data ⇒ error

14

15

Overhead

Tool
GNU

C Library
Electric
Fence Valgrind

Space 2 bytes/
malloc

1 page/
malloc

100%

Time negligible negligible 2500%

13

14

15

Preventing Misuse

16

• CYCLONE is a C dialect which prevents
common pitfalls of C

• Most important feature: special pointers

Non-NULL Pointers

17

int getc (FILE @fp);

fp may not be NULL

extern FILE *fp;
char c = getc(fp);

warning: NULL check inserted

Fat Pointers

18

int strlen(const char? s)

• A fat pointer holds address and size

• All accesses via a fat pointer are
automatically bounds-checked

addr

size 6

s

Hello

*s

16

17

18

CYCLONE Restrictions

‣ NULL checks are inserted

‣ Pointer arithmetic is restricted

‣ Pointers must be initialized before use

‣ Dangling pointers are prevented through
region analysis and limitations on free()

‣ Only “safe” casts and unions are allowed

19

Production Code

• Should products ship with active
assertions?

20

Things to Check

• Critical results. If lives, health, or money
depend on a result, it had better be
checked.

• External conditions. Any conditions which
are not within our control must be checked
for integrity.

21

19

20

21

Points to Consider

• The more active assertions, the greater the
chance to catch infections.

• The sooner a program fails, the easier it is
to track the defect.

• Defects that escape into the field are the
hardest to track.

22

More to Consider

• By default, failing assertions are not user-
friendy.

➡ Handle assertions in a user-friendly way

• Assertions impact performance.

➡ First measure; then turn off only the most
time-consuming assertions

23

Concepts
To check memory integrity, use specialized
tools to detect errors at run time

Apply such tools before any other method

To fully prevent memory errors, use
another language (or dialect, e.g. Cyclone)

Turning assertions off seldom justifies the
risk of erroneous computation

24

22

23

24

25

This work is licensed under the Creative Commons Attribution License. To view a copy of this license, visit

http://creativecommons.org/licenses/by/1.0

or send a letter to Creative Commons, 559 Abbott Way, Stanford, California 94305, USA.

25

