
Random Testing
+

Delta Debugging

Test Case Generator

class A {
 public A(int x){
 public int m1(){...}
 public int m2(B b){...}
 private int m3(){...}
}

Generated Test

class ATest {
@Test
public generatedTest(){

A v1 = new A(5236);
v1.m1();
B v2 = new B();
v1.m2(v2);
A v3 = new A(-7829);
v3.m2(v2);
...

Test Case Generator

• Use reflection to get constructors and
methods, and their parameters.

• Use constructor objects to create an
instance.

• Use method objects to call a method.

• If the call succeeded produce equivalent
Java code.

Object Pool

• Returns objects for given class/interface.

• Allows reuse of objects.

Delta Debugging

• Start with a failing test.

• Apply ddmin to the the source code of the
test.

• Compile and load intermediate versions of
the class. (see tests)

Class Loading in Java

• Class loading: Loading the binary
representation into the JVM.

• ClassLoaders load a class.

• Each class is uniquely defined by its
ClassLoader and its name.

• Classes are loaded at the first active use or
explicitly with a call to loadClass().

Bootstrap Class Loader

• Loads bootstrap classes, e.g. classes from
rt.jar/classes.jar (containing java.lang
classes) and from the given classpath.

• Order on classpath matters.

Own Class Loaders

• Java uses a delegation model for loading
classes.

• Each class loader has a parent. (except
bootstrap class loader)

• Only load a class when it is not already
loaded by parent. Otherwise findClass is
called.

Pitfalls

• Endless Recursion: circular dependency.

• Endless loops: no method is callable.

