
Andreas Zeller

Tracking Origins

Today’s Topics

• Exploring History

• Dynamic Slicing

• Leveraging Origins

2

Exploring the Past

1. Set a breakpoint

2. Start program, reaching breakpoint

3. Step, Step, Step, …

4. Oops! I’ve gone too far!

3

A typical debugging session looks like this:

1

2

3

Omniscient Debugging

4

How does it work?

5

• ODB records a trace of the entire
execution history

• Slows down programs by a factor of 10

• Records about 100 MB/s

• Now available in commercial tools

6

Dynamic Slicing

• Static slices apply to all program runs:

• General + reusable, but imprecise

• A dynamic slice applies to a single run:

• Specific and precise

ODC by Bil Lewis
[Give an interactive demo,
using the ODC pre-canned
demo download]

4

Commercially available in
RETROVUE and
CODEGUIDE

5

6

7

Exit

return f

f1 = f

f0 = f1

f = f0 + f1

n = n - 1

while (n > 1)

int f1 = 1

int f0 = 1

int f

Entry: fib(n)

1

2

3

4

5

6

7

8

0

10

9

Static Slicing

• Given a statement B, the
backward slice contains
all statements that could
influence the read
variables or execution
of B

• Formally:

SB(B) = {A|A→∗ B}

8

 1 n = read();
 2 a = read();
 3 x = 1;
 4 b = a + x;
 5 a = a + 1;
 6 i = 1;
 7 s = 0;
 8 while (i <= n) {
 9 if (b > 0)
10 if (a > 1)
11 x = 2;
12 s = s + x;
13 i = i + 1;
14 }
15 write(s);

Static slice for (s, 15)

 1 n = read(); // n = 2
 2 a = read(); // a = 0
 3 x = 1;
 4 b = a + x;
 5 a = a + 1;
 6 i = 1;
 7 s = 0;
 8 while (i <= n) {
 9 if (b > 0)
10 if (a > 1)
11 x = 2;
12 s = s + x;
13 i = i + 1;
14 }
15 write(s);

Dynamic slice for (s, 15)

9

 1 n = read();
 2 a = read();
 3 x = 1;
 4 b = a + x;
 5 a = a + 1;
 6 i = 1;
 7 s = 0;
 8 while (i <= n) {
 9 if (b > 0)
10 if (a > 1)
11 x = 2;
12 s = s + x;
13 i = i + 1;
14 }
15 write(s);

1. Obtain a trace of the
execution

2. Get the variables that are
read and written

3. Assign an empty slice to
each written variable

4. Compute the slices from
start to end:

DynSlice(w) =
⋃

i

(

DynSlice(ri)∪ {line(ri)}
)

Just a reminder...

7

8

9

Trace Write Read Dynamic Slice

n
a
x
b a, x 2, 3
a a 2
i
s
p8 i, n 6, 1
p9 b, p8 4, 2, 3, 8, 6, 1
p10 a, p9 5, 2, 9, 4, 2, 3, 8, 6, 1
s s, x, p8 7, 3, 8, 6, 1
i i, p8 8, 6, 1
p8 i, n 13, 8, 6, 1
p9 b, p8 4, 2, 3, 13, 8, 6, 1
p10 a, p9 5, 2, 9, 4, 2, 3, 13, 8, 6, 1
s s, x, p8 12, 7, 3, 6, 8, 1, 13
i i, p8 13, 8, 6, 1
p8 i, n 13, 8, 6, 1
o15 s 12, 7, 3, 6, 8, 1, 13

 1 n = read();
 2 a = read();
 3 x = 1;
 4 b = a + x;
 5 a = a + 1;
 6 i = 1;
 7 s = 0;
 8 while (i <= n) {
 9 if (b > 0)
10 if (a > 1)
12 s = s + x;
13 i = i + 1;
 8 while (i <= n) {
 9 if (b > 0)
10 if (a > 1)
12 s = s + x;
13 i = i + 1;
 8 while (i <= n) {
15 write(s);

10

DynSlice(w) =
⋃

i

(

DynSlice(ri)∪ {line(ri)}
)

Trace Write Read Dynamic Slice

n
a
x
b a, x 2, 3
a a 2
i
s
p8 i, n 6, 1
p9 b, p8 4, 2, 3, 8, 6, 1
p10 a, p9 5, 2, 9, 4, 2, 3, 8, 6, 1
s s, x, p8 7, 3, 8, 6, 1
i i, p8 8, 6, 1
p8 i, n 13, 8, 6, 1
p9 b, p8 4, 2, 3, 13, 8, 6, 1
p10 a, p9 5, 2, 9, 4, 2, 3, 13, 8, 6, 1
s s, x, p8 12, 7, 3, 6, 8, 1, 8, 13
i i, p8 13, 8, 6, 1
p8 i, n 13, 8, 6, 1
o15 s 12, 7, 3, 6, 8, 1, 13

 1 n = read();
 2 a = read();
 3 x = 1;
 4 b = a + x;
 5 a = a + 1;
 6 i = 1;
 7 s = 0;
 8 while (i <= n) {
 9 if (b > 0)
10 if (a > 1)
12 s = s + x;
13 i = i + 1;
 8 while (i <= n) {
 9 if (b > 0)
10 if (a > 1)
12 s = s + x;
13 i = i + 1;
 8 while (i <= n) {
15 write(s);

11

Trace Write Read Dynamic Slice

n
a
x
b a, x 2, 3
a a 2
i
s
p8 i, n 6, 1
p9 b, p8 4, 2, 3, 8, 6, 1
p10 a, p9 5, 2, 9, 4, 2, 3, 8, 6, 1
s s, x, p8 7, 3, 8, 6, 1
i i, p8 8, 6, 1
p8 i, n 13, 8, 6, 1
p9 b, p8 4, 2, 3, 13, 8, 6, 1
p10 a, p9 5, 2, 9, 4, 2, 3, 13, 8, 6, 1
s s, x, p8 12, 7, 3, 6, 8, 1, 8, 13
i i, p8 13, 8, 6, 1
p8 i, n 13, 8, 6, 1
o15 s 12, 7, 3, 6, 8, 1, 13

 1 n = read();
 2 a = read();
 3 x = 1;
 4 b = a + x;
 5 a = a + 1;
 6 i = 1;
 7 s = 0;
 8 while (i <= n) {
 9 if (b > 0)
10 if (a > 1)
12 s = s + x;
13 i = i + 1;
 8 while (i <= n) {
 9 if (b > 0)
10 if (a > 1)
12 s = s + x;
13 i = i + 1;
 8 while (i <= n) {
15 write(s);

12

10

11

12

13

 1 n = read();
 2 a = read();
 3 x = 1;
 4 b = a + x;
 5 a = a + 1;
 6 i = 1;
 7 s = 0;
 8 while (i <= n) {
 9 if (b > 0)
10 if (a > 1)
11 x = 2;
12 s = s + x;
13 i = i + 1;
14 }
15 write(s);

Static slice for (s, 15)

 1 n = read(); // n = 2
 2 a = read(); // a = 0
 3 x = 1;
 4 b = a + x;
 5 a = a + 1;
 6 i = 1;
 7 s = 0;
 8 while (i <= n) {
 9 if (b > 0)
10 if (a > 1)
11 x = 2;
12 s = s + x;
13 i = i + 1;
14 }
15 write(s);

Dynamic slice for (s, 15)

14

Discussion
• Dynamic slices are much more precise than

static slices (applied to the one run, that is)

• From some variable, a backward slice
encompasses on average

• 30% of the entire program (static slice)

• 5% of the executed program (dynamic slice)

• Overhead as in omniscient debugging

The Whyline

15

13

14

Ko and Myers (2004) from
CMU (Human-Computer
Interaction)

15

16

17

18

“Why did” questions

• Take the dynamic slice of the variable

• Follow at most two dependencies

• If programmer wants to, follow
dependencies transitively

Ko and Myers (2004) from
CMU (Human-Computer
Interaction)

16

Ko and Myers (2004) from
CMU (Human-Computer
Interaction)
[switch back and forth
between last slide and this
slide]

17

18

19

 1 n = read(); // n = 2
 2 a = read(); // a = 0
 3 x = 1;
 4 b = a + x;
 5 a = a + 1;
 6 i = 1;
 7 s = 0;
 8 while (i <= n) {
 9 if (b > 0)
10 if (a > 1)
11 x = 2;
12 s = s + x;
13 i = i + 1;
14 }
15 write(s);

“Why did s = 2 in Line 15?”

“Because s = 1 and i = 2”
Take the dynamic slice of
the variable

Follow at most two
dependencies

If programmer wants to,
follow dependencies
transitively

20

“Why didn’t” questions

• Follow back control dependencies to
closest controlling statement(s)

• Do a “why did” question on each

• Again, follow at most two dependencies

21

 1 n = read(); // n = 2
 2 a = read(); // a = 0
 3 x = 1;
 4 b = a + x;
 5 a = a + 1;
 6 i = 1;
 7 s = 0;
 8 while (i <= n) {
 9 if (b > 0)
10 if (a > 1)
11 x = 2;
12 s = s + x;
13 i = i + 1;
14 }
15 write(s);

“Why didn’t x = 2 in Line 11?”

“Because a = 1 and b = 1” Follow back control
dependencies to closest
controlling statement(s)

Do a “why did” question
on each

Again, follow at most two
dependencies

19

20

21

Discussion

22

The WHYLINE combines

• omniscient debugging

• static slicing

• dynamic slicing

in an attractive package, showcasing the state
of the art in interactive debugging

23

Tracking Infections

1. Start with the infected value as seen in the
failure

2. Follow back the dependencies

3. Observe and judge origins – are they sane?

4. If some origin is infected, repeat at Step 2

5. All origins are sane? Here’s the infection site!

24

Concepts

Omniscient debugging allows for simple
exploration of the entire execution history

Dynamic slicing tells the origin of a value

To track down an infection, follow
dependencies and observe origins,
repeating the process for infected origins

22

23

24

25

This work is licensed under the Creative Commons Attribution License. To view a copy of this license, visit

http://creativecommons.org/licenses/by/1.0

or send a letter to Creative Commons, 559 Abbott Way, Stanford, California 94305, USA.

25

