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Tracking Origins

Today’s Topics

• Exploring History

• Dynamic Slicing

• Leveraging Origins
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Exploring the Past

1. Set a breakpoint

2. Start program, reaching breakpoint

3. Step, Step, Step, …

4. Oops! I’ve gone too far!
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A typical debugging session looks like this:
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Omniscient Debugging
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How does it work?
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• ODB records a trace of the entire 
execution history

• Slows down programs by a factor of 10

• Records about 100 MB/s

• Now available in commercial tools
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Dynamic Slicing

• Static slices apply to all program runs:

• General + reusable, but imprecise

• A dynamic slice applies to a single run:

• Specific and precise

ODC by Bil Lewis
[Give an interactive demo, 
using the ODC pre-canned 
demo download]
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Commercially available in 
RETROVUE and 
CODEGUIDE
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Exit

return f

f1 = f

f0 = f1

f = f0 + f1

n = n - 1

while (n > 1)

int f1 = 1

int f0 = 1

int f

Entry: fib(n)
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Static Slicing

• Given a statement B, the 
backward slice contains 
all statements that could 
influence the read 
variables or execution 
of B

• Formally:

SB(B) = {A|A→∗ B}
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 1 n = read();
 2 a = read();
 3 x = 1;
 4 b = a + x;
 5 a = a + 1;
 6 i = 1;
 7 s = 0;
 8 while (i <= n) {
 9     if (b > 0)
10         if (a > 1)
11             x = 2;
12     s = s + x;
13     i = i + 1;
14 }
15 write(s);

Static slice for (s, 15)

 1 n = read(); // n = 2
 2 a = read(); // a = 0
 3 x = 1;
 4 b = a + x;
 5 a = a + 1;
 6 i = 1;
 7 s = 0;
 8 while (i <= n) {
 9     if (b > 0)
10         if (a > 1)
11             x = 2;
12     s = s + x;
13     i = i + 1;
14 }
15 write(s);

Dynamic slice for (s, 15)
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 1 n = read();
 2 a = read();
 3 x = 1;
 4 b = a + x;
 5 a = a + 1;
 6 i = 1;
 7 s = 0;
 8 while (i <= n) {
 9     if (b > 0)
10         if (a > 1)
11             x = 2;
12     s = s + x;
13     i = i + 1;
14 }
15 write(s);

1. Obtain a trace of the 
execution

2. Get the variables that are 
read and written

3. Assign an empty slice to 
each written variable

4. Compute the slices from 
start to end:

DynSlice(w) =
⋃

i

(

DynSlice(ri)∪ {line(ri)}
)

Just a reminder...
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Trace Write Read Dynamic Slice

n
a
x
b a, x 2, 3
a a 2
i
s
p8 i, n 6, 1
p9 b, p8 4, 2, 3, 8, 6, 1
p10 a, p9 5, 2, 9, 4, 2, 3, 8, 6, 1
s s, x, p8 7, 3, 8, 6, 1
i i, p8 8, 6, 1
p8 i, n 13, 8, 6, 1
p9 b, p8 4, 2, 3, 13, 8, 6, 1
p10 a, p9 5, 2, 9, 4, 2, 3, 13, 8, 6, 1
s s, x, p8 12, 7, 3, 6, 8, 1, 13
i i, p8 13, 8, 6, 1
p8 i, n 13, 8, 6, 1
o15 s 12, 7, 3, 6, 8, 1, 13

 1 n = read();
 2 a = read();
 3 x = 1;
 4 b = a + x;
 5 a = a + 1;
 6 i = 1;
 7 s = 0;
 8 while (i <= n) {
 9     if (b > 0)
10         if (a > 1)
12     s = s + x;
13     i = i + 1;
 8 while (i <= n) {
 9     if (b > 0)
10         if (a > 1)
12     s = s + x;
13     i = i + 1;
 8 while (i <= n) {
15 write(s);
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DynSlice(w) =
⋃

i

(

DynSlice(ri)∪ {line(ri)}
)

Trace Write Read Dynamic Slice

n
a
x
b a, x 2, 3
a a 2
i
s
p8 i, n 6, 1
p9 b, p8 4, 2, 3, 8, 6, 1
p10 a, p9 5, 2, 9, 4, 2, 3, 8, 6, 1
s s, x, p8 7, 3, 8, 6, 1
i i, p8 8, 6, 1
p8 i, n 13, 8, 6, 1
p9 b, p8 4, 2, 3, 13, 8, 6, 1
p10 a, p9 5, 2, 9, 4, 2, 3, 13, 8, 6, 1
s s, x, p8 12, 7, 3, 6, 8, 1, 8, 13
i i, p8 13, 8, 6, 1
p8 i, n 13, 8, 6, 1
o15 s 12, 7, 3, 6, 8, 1, 13

 1 n = read();
 2 a = read();
 3 x = 1;
 4 b = a + x;
 5 a = a + 1;
 6 i = 1;
 7 s = 0;
 8 while (i <= n) {
 9     if (b > 0)
10         if (a > 1)
12     s = s + x;
13     i = i + 1;
 8 while (i <= n) {
 9     if (b > 0)
10         if (a > 1)
12     s = s + x;
13     i = i + 1;
 8 while (i <= n) {
15 write(s);
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Trace Write Read Dynamic Slice

n
a
x
b a, x 2, 3
a a 2
i
s
p8 i, n 6, 1
p9 b, p8 4, 2, 3, 8, 6, 1
p10 a, p9 5, 2, 9, 4, 2, 3, 8, 6, 1
s s, x, p8 7, 3, 8, 6, 1
i i, p8 8, 6, 1
p8 i, n 13, 8, 6, 1
p9 b, p8 4, 2, 3, 13, 8, 6, 1
p10 a, p9 5, 2, 9, 4, 2, 3, 13, 8, 6, 1
s s, x, p8 12, 7, 3, 6, 8, 1, 8, 13
i i, p8 13, 8, 6, 1
p8 i, n 13, 8, 6, 1
o15 s 12, 7, 3, 6, 8, 1, 13

 1 n = read();
 2 a = read();
 3 x = 1;
 4 b = a + x;
 5 a = a + 1;
 6 i = 1;
 7 s = 0;
 8 while (i <= n) {
 9     if (b > 0)
10         if (a > 1)
12     s = s + x;
13     i = i + 1;
 8 while (i <= n) {
 9     if (b > 0)
10         if (a > 1)
12     s = s + x;
13     i = i + 1;
 8 while (i <= n) {
15 write(s);
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 1 n = read();
 2 a = read();
 3 x = 1;
 4 b = a + x;
 5 a = a + 1;
 6 i = 1;
 7 s = 0;
 8 while (i <= n) {
 9     if (b > 0)
10         if (a > 1)
11             x = 2;
12     s = s + x;
13     i = i + 1;
14 }
15 write(s);

Static slice for (s, 15)

 1 n = read(); // n = 2
 2 a = read(); // a = 0
 3 x = 1;
 4 b = a + x;
 5 a = a + 1;
 6 i = 1;
 7 s = 0;
 8 while (i <= n) {
 9     if (b > 0)
10         if (a > 1)
11             x = 2;
12     s = s + x;
13     i = i + 1;
14 }
15 write(s);

Dynamic slice for (s, 15)
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Discussion
• Dynamic slices are much more precise than 

static slices (applied to the one run, that is)

• From some variable, a backward slice 
encompasses on average

• 30% of the entire program (static slice)

• 5% of the executed program (dynamic slice)

• Overhead as in omniscient debugging

The Whyline
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Ko and Myers (2004) from 
CMU (Human-Computer 
Interaction)
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“Why did” questions

• Take the dynamic slice of the variable

• Follow at most two dependencies

• If programmer wants to, follow 
dependencies transitively

Ko and Myers (2004) from 
CMU (Human-Computer 
Interaction)
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Ko and Myers (2004) from 
CMU (Human-Computer 
Interaction)
[switch back and forth 
between last slide and this 
slide]
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 1 n = read(); // n = 2
 2 a = read(); // a = 0
 3 x = 1;
 4 b = a + x;
 5 a = a + 1;
 6 i = 1;
 7 s = 0;
 8 while (i <= n) {
 9     if (b > 0)
10         if (a > 1)
11             x = 2;
12     s = s + x;
13     i = i + 1;
14 }
15 write(s);

“Why did s = 2 in Line 15?”

“Because s = 1 and i = 2” 
Take the dynamic slice of 
the variable

Follow at most two 
dependencies

If programmer wants to, 
follow dependencies 
transitively
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“Why didn’t” questions

• Follow back control dependencies to 
closest controlling statement(s)

• Do a “why did” question on each

• Again, follow at most two dependencies
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 1 n = read(); // n = 2
 2 a = read(); // a = 0
 3 x = 1;
 4 b = a + x;
 5 a = a + 1;
 6 i = 1;
 7 s = 0;
 8 while (i <= n) {
 9     if (b > 0)
10         if (a > 1)
11             x = 2;
12     s = s + x;
13     i = i + 1;
14 }
15 write(s);

“Why didn’t x = 2 in Line 11?”

“Because a = 1 and b = 1” Follow back control 
dependencies to closest 
controlling statement(s)

Do a “why did” question 
on each

Again, follow at most two 
dependencies
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Discussion
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The WHYLINE combines

• omniscient debugging

• static slicing

• dynamic slicing

in an attractive package, showcasing the state 
of the art in interactive debugging
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Tracking Infections

1. Start with the infected value as seen in the 
failure

2. Follow back the dependencies

3. Observe and judge origins – are they sane?

4. If some origin is infected, repeat at Step 2

5. All origins are sane? Here’s the infection site!
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Concepts

Omniscient debugging allows for simple 
exploration of the entire execution history

Dynamic slicing tells the origin of a value

To track down an infection, follow 
dependencies and observe origins, 
repeating the process for infected origins
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This work is licensed under the Creative Commons Attribution License.  To view a copy of this license, visit

http://creativecommons.org/licenses/by/1.0

or send a letter to Creative Commons, 559 Abbott Way, Stanford, California 94305, USA. 
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