
Andreas Zeller

Observing Facts

2

Experimentation

Induction

Observation

Deduction

Reasoning about Runs

0 runs

1 run

n runs

n controlled runs

3

Observation

Reasoning about Runs

Deduction
0 runs

1 run

1

2

3



4

Principles of 
Observation

• Don’t interfere.

• Know what and when to observe.

• Proceed systematically.

5

Logging execution

• General idea: Insert output statements at 
specific places in the program

• Also known as printf debugging

6

Printf Problems

• Clobbered code

• Clobbered output

• Slow down

• Possible loss of data (due to buffering)

4

Demonstrate technique, using sample 
program

5

6



7

Better Logging

• Use standard formats

• Make logging optional

• Allow for variable granularity

• Be persistent

8

Logging Functions

• Have specific functions for logging
(e.g. dprintf() to print to a specific logging 
channel)

• Have specific macros that can be turned on 
or off–for focusing as well as for production 
code

Logging Frameworks

• Past: home-grown logging facilities

• Future: standard libraries for logging

• Example: The LOGFORJ framework

9

7

Again, demonstrate the use of LOG() 
interactively

8

9



LOGFORJ

10

    // Initialize a logger.
    final ULogger logger = 
        LoggerFactory.getLogger(TestLogging.class);

    // Try a few logging methods
    public static void main(String args[]) {
        logger.debug("Start of main()");
        logger.info ("A log message with level set to INFO");
        logger.warn ("A log message with level set to WARN");
        logger.error("A log message with level set to ERROR");
        logger.fatal("A log message with level set to FATAL");

        new TestLogging().init();
    }

Customizing Logs

11

# Set root logger level to DEBUG and its only appender to A1.
log4j.rootLogger=DEBUG, A1

# A1 is set to be a ConsoleAppender.
log4j.appender.A1=org.apache.log4j.ConsoleAppender

# A1 uses PatternLayout.
log4j.appender.A1.layout=org.apache.log4j.PatternLayout
log4j.appender.A1.layout.ConversionPattern=\
%d [%t] %-5p %c %x - %m%n

2005-02-06 20:47:31,508 [main] DEBUG  TestLogging - Start of 
main()
2005-02-06 20:47:31,529 [main] INFO   TestLogging - A log 
message with level set to INFO

Chainsaw

12

The core idea of LOGFORJ is to 
assign each class in an application an
individual or common logger.  A logger 
is a component which
takes a request for logging and logs it.  
Each logger has a
level, from DEBUG over INFO, WARN, 
and ERROR to FATAL (very important 
messages).

10

The core idea of LOGFORJ is to 
assign each class in an application an
individual or common logger.  A logger 
is a component which
takes a request for logging and logs it.  
Each logger has a
level, from DEBUG over INFO, WARN, 
and ERROR to FATAL (very important 
messages).

11

12



13

Logging with Aspects

• Basic idea: Separate concerns into individual 
syntactic entities (aspects)

• Aspect code (advice) is woven into the 
program code at specific places (join points)

• The same aspect code can be woven into 
multiple places (pointcuts)

14

A Logging Aspect
public aspect LogBuy {
    pointcut buyMethod():
        call(public void Article.buy());
    before(): buyMethod() {
      System.out.println("Entering Article.buy()")
    }
    after(): buyMethod() {
      System.out.println("Leaving Article.buy()")
    }
} $ ajc logBuy.aj Article.java

$ java Article

15

 Using Pointcuts
public aspect LogArticle {
  pointcut allMethods():
    call(public * Article.*(..));
  before(): allMethods() {
    System.out.println("Entering " + thisJoinPoint)
  }
  after(): allMethods() {
    System.out.println("Leaving " + thisJoinPoint)
  }
}

13

14

15



16

Aspect Arguments

public aspect LogMoves {
    pointcut setP(Line a_line, Point p): 
        call(void a_line.setP*(p));

    after(Line a_line, Point p): setP(a_line, p) {
        System.out.println(a_line + 
                           " moved to " + p + ".");
    }
}

17

Observation Tools

• Getting started fast – without altering the 
program code at hand

• Flexible observation of arbitrary events

• Transient sessions – no code is written

18

Debuggers

• Execute the program and make it stop 
under specific conditions

• Observe the state of the stopped program

• Change the state of the program

16

17

18



19

static void shell_sort(int a[], int size)
{
    int i, j;
    int h = 1;
    do {
        h = h * 3 + 1;
    } while (h <= size);
    do {
        h /= 3;
        for (i = h; i < size; i++)
        {
            int v = a[i];
            for (j = i; j >= h && a[j - h] > v; j -= h)
                a[j] = a[j - h];
            if (i != j)
                a[j] = v;
        }
    } while (h != 1);
}

A Debugging Session

20

More Features

• Control environment

• Post mortem debugging

• Logging data

• Fix and continue

21

More on Breakpoints

• Data breakpoints (watchpoints)

• Conditional breakpoints

Show this interactively with GDB or 
DDD

19

20

Demonstrate watchpoints and 
conditionals interactively

21



22

Debugger Caveats

• A debugger is a tool, not a toy!

23

Visualizing Data

24

Concepts

Logging functions (”printf debugging”) are 
easy to use, but clobber code and output

To encapsulate and reuse debugging code, 
use dedicated logging functions or aspects 

22

Again, demonstrate DDD interactively

23

24



25

Concepts (2)

Logging functions can be turned on or off 
(and may even remain in the source code)

Aspects elegantly keep all logging code in 
one place

Debuggers allow flexible + quick 
observation of arbitrary events

26

Concepts (3)

To observe the final state of a crashing 
program, use a debugger

Advanced debuggers allow to query events 
in a declarative fashion…

…as well as visualizing events and data

27

This work is licensed under the Creative Commons Attribution License.  To view a copy of this license, visit

http://creativecommons.org/licenses/by/1.0

or send a letter to Creative Commons, 559 Abbott Way, Stanford, California 94305, USA. 

25

26

27


