
Andreas Zeller

Deducing Errors

2

Obtaining a Hypothesis

Hypothesis

Problem Report

Code

Run

More Runs

Deducing from

Observing a

Learning from

Earlier Hypotheses
+ Observations

3

Experimentation

Induction

Observation

Deduction

Reasoning about Runs

0 runs

1 run

n runs

n controlled runs

1

2

3

4

Deduction

Reasoning about Runs

0 runs

5

What’s relevant?

10 INPUT X
20 Y = 0
30 X = Y
40 PRINT “X = “, X

6

Fibonacci Numbers

fib(n) =

{

1, for n = 0∨n = 1

fib(n− 1)+ fib(n− 2), otherwise .

1 1 2 3 5 8 13 21 34 55

4

5

6

7

fibo.c
int fib(int n)
{
 int f, f0 = 1, f1 = 1;

 while (n > 1) {
	 n = n - 1;
	 f = f0 + f1;
	 f0 = f1;
	 f1 = f;
 }

 return f;
}

int main()
{
 int n = 9;

 while (n > 0)
 {
 printf("fib(%d)=%d\n",
 n, fib(n));
 n = n - 1;
 }

 return 0;
}

8

./fibo

Fibo in Action

gcc -o fibo fibo.c$

fib(9)=55
fib(8)=34
...
fib(2)=2
fib(1)=134513905

$

Where does
fib(1) come from?

9

Effects of Statements

• Write. A statement can change the
program state (i.e. write to a variable)

• Control. A statement may determine which
statement is executed next
(other than unconditional transfer)

7

8

9

10

Affected Statements

• Read. A statement can read the program
state (i.e. from a variable)

• Execution. To have any effect, a statement
must be executed.

11

Effects in fibo.c
Statement Reads Writes Controls

0 fib(n) n 1-10
1 int f f
2 f0 = 1 f0
3 f1 = 1 f1
4 while (n > 1) n 5-8
5 n = n - 1 n n
6 f = f0 + f1 f0, f1 f
7 f0 = f1 f1 f0
8 f1 = f f f1
9 return f f <ret>

12

Control Flow
int fib(int n)
{
 int f, f0 = 1, f1 = 1;

 while (n > 1) {
	 n = n - 1;
	 f = f0 + f1;
	 f0 = f1;
	 f1 = f;
 }

 return f;
}

Exit

return f

f1 = f

f0 = f1

f = f0 + f1

n = n - 1

while (n > 1)

int f1 = 1

int f0 = 1

int f

Entry: fib(n)

1

2

3

4

5

6

7

8

0

10

9

10

11

The CFG is best
developed incrementally
on an extra board.

12

13

Control Flow Patterns
while (COND)

BODY

if (COND)

THEN-BLOCK ELSE-BLOCK

while (COND)

BODY

do

COND

BODY

for

INIT

INCR

while (COND)

 BODY;

if (COND)

 THEN-BLOCK;
else

 ELSE-BLOCK;

do {

 BODY
} while (COND);

for (INIT; COND; INCR)
 BODY;

14

Data dependency:

A's data is used in B;

B is data dependent on A

A B

Exit

return f

f1 = f

f0 = f1

f = f0 + f1

n = n - 1

while (n > 1)

int f1 = 1

int f0 = 1

int f

Entry: fib(n)

1

2

3

4

5

6

7

8

0

10

9

Control dependency:

A controls B's execution;

B is control dependent on A

A B

Dependences

15

Exit

return f

f1 = f

f0 = f1

f = f0 + f1

n = n - 1

while (n > 1)

int f1 = 1

int f0 = 1

int f

Entry: fib(n)

1

2

3

4

5

6

7

8

0

10

9

Dependences

Following the
dependences, we can
answer questions like

• Where does this value
go to?

• Where does this value
come from?

13

Again, this is best
developed interactively on
the board (possibly by
having the students call
further dependences)

14

Again, this is best
developed interactively on
the board (possibly by
having the students call
further dependences)

15

16

Navigating along
Dependences

17

Program Slicing

• A slice is a subset of the program

• Allows programmers to focus on what’s
relevant with respect to some statement S:

• All statements influenced by S

• All statements that influence S

18

Exit

return f

f1 = f

f0 = f1

f = f0 + f1

n = n - 1

while (n > 1)

int f1 = 1

int f0 = 1

int f

Entry: fib(n)

1

2

3

4

5

6

7

8

0

10

9

Forward Slice

• Given a statement A, the
forward slice contains all
statements whose read
variables or execution
could be influenced by A

• Formally:

SF(A) = {B|A→∗ B}

16

17

Again, this is best
developed interactively on
the board (possibly by
having the students call
further dependences)

18

19

Exit

return f

f1 = f

f0 = f1

f = f0 + f1

n = n - 1

while (n > 1)

int f1 = 1

int f0 = 1

int f

Entry: fib(n)

1

2

3

4

5

6

7

8

0

10

9

Backward Slice

• Given a statement B, the
backward slice contains
all statements that could
influence the read
variables or execution
of B

• Formally:

SB(B) = {A|A→∗ B}

20

Backward slice of mul
Backward slice of sum

Two Slices
int main() {
 int a, b, sum, mul;
 sum = 0;
 mul = 1;
 a = read();
 b = read();
 while (a <= b) {
 sum = sum + a;
 mul = mul * a;
 a = a + 1;
 }
 write(sum);
 write(mul);
}

Slice Operations:

• Backbones

• Dices

• Chops

21

Backbone

 a = read();
 b = read();
 while (a <= b) {

 a = a + 1;

• Contains only those
statement that occur
in both slices

• Useful for focusing on
common behavior

Again, this is best
developed interactively on
the board (possibly by
having the students call
further dependences)

19

20

21

22

Two Slices
int main() {
 int a, b, sum, mul;
 sum = 0;
 mul = 1;
 a = read();
 b = read();
 while (a <= b) {
 sum = sum + a;
 mul = mul * a;
 a = a + 1;
 }
 write(sum);
 write(mul);
}

Backward slice of sum
Backward slice of mul

Slice Operations:

• Backbones

• Dices

• Chops

23

Dice

 sum = 0;

 sum = sum + a;

 write(sum);

• Contains only the
difference between
two slices

• Useful for focusing on
differing behavior

24

Exit

return f

f1 = f

f0 = f1

f = f0 + f1

n = n - 1

while (n > 1)

int f1 = 1

int f0 = 1

int f

Entry: fib(n)

1

2

3

4

5

6

7

8

0

10

9

Chop

• Intersection between
a forward and a
backward slice

• Useful for determining
influence paths within
the program

22

23

Again, this is best
developed interactively on
the board (possibly by
having the students call
further dependences)

24

25

Leveraging Slices

Text

(Note: This slice is executable!)

26

Deducing Code Smells

• Use of uninitialized variables

• Unused values

• Unreachable code

• Memory leaks

• Interface misuse

• Null pointers

27

Uninitialized
Variables

gcc -Wall -O -o fibo fibo.c$
fibo.c: In function `fib':
fibo.c:7: warning: `f' might be
used uninitialized in this
function

25

26

27

28

False Positives
int go;
switch (color) {
 case RED:
 case AMBER:
 go = 0;
 break;
 case GREEN:
 go = 1;
 break;
}
if (go) { ... }

warning: `go' might
be used uninitialized
in this function

29

Unreachable Code

if (w >= 0)
 printf("w is non-negative\n");
else if (w > 0)
 printf("w is positive\n");

warning: will never be executed

30

Memory Leaks
int *readbuf(int size)
{
 int *p = malloc(size * sizeof(int));
 for (int i = 0; i < size; i++) {
	 p[i] = readint();
	 if (p[i] == 0)
	 return 0; // end-of-file
 }
 return p;
}

memory leak

28

29

30

31

Interface Misuse
void readfile()
{
 int fp = open(file);
	 int size = readint(file);
	 if (size <= 0)
	 return;
	 ...
	 close(fp);
} stream not closed

32

Null Pointers
int *readbuf(int size)
{
 int *p = malloc(size * sizeof(int));
 for (int i = 0; i < size; i++) {
	 p[i] = readint();
	 if (p[i] == 0)
	 return 0; // end-of-file
 }
 return p;
}

p may be null

33

Findbugs

31

32

33

34

• Class implements Cloneable but does not
define or use clone method

• Method might ignore exception

• Null pointer dereference in method

• Class defines equal(); should it be equals()?

• Method may fail to close database resource

• Method may fail to close stream

• Method ignores return value

• Unread field

• Unused field

Defect Patterns

35

Limits of Analysis
int x;
for(i=j=k=1;--j||k;k=j?i%j?k:k-j:(j=i+=2));
write(x);

• Is x being used uninitialized or not?

• Loop halts only if there is an odd perfect
number (= a number that’s the sum of its
proper positive divisors)

• Problem is undediced yet

36

static void shell_sort(int a[], int size)
{
 int i, j;
 int h = 1;
 do {
 h = h * 3 + 1;
 } while (h <= size);
 do {
 h /= 3;
 for (i = h; i < size; i++)
 {
 int v = a[i];
 for (j = i; j >= h && a[j - h] > v; j -= h)
 a[j] = a[j - h];
 if (i != j)
 a[j] = v;
 }
 } while (h != 1);
}

Conservative approximation:
any a[] depends on all a[]

34

35

36

37

Causes of Imprecision

• Indirect access, as in a[i]

• Pointers

• Functions

• Dynamic dispatch

• Concurrency

38

Risks of Deduction

• Code mismatch. Is the run created from
this very source code?

• Imprecision. A slice typically encompasses
90% of the source code.

• Abstracting away. Failures may be caused
by a defect in the environment.

Dijkstra’s Curse

configurations

Testing can only find the
presence of errors,
 not their absence

39

37

38

But still, testing suffers
from what I call Dijkstra’s
curse – a double meaning,
as it applies both to
testing as to his famous
quote. Is there something
that can find the absence
of errors?

39

Formal Verification

configurations
40

Formal Verification

configurations

ab
st

ra
ct

io
n

41

Formal Verification

configurations

ab
st

ra
ct

io
n

42

40

41

Areas missing might be:
the operating system, the
hardware, all of the world
the system is embedded in
(including humans!)

42

Best of Both Worlds

configurations

ab
st

ra
ct

io
n

43

Hetzel-Myers Law

A combination
of different V&V methods
outperforms any single

method alone.

44

45

Increasing Precision

• Verification. If we know that certain
properties hold, we can leverage them in
our inference process.

• Observation. Facts from concrete runscan
be combined with deduction.

…in the weeks to come!

We might not be able to
cover all abstraction levels
in all configurations, but
we can do our best to
cover as much as possible.

43

44

45

46

Concepts

To reason about programs, use

• deduction (0 runs)

• observation (1 run)

• induction (multiple runs)

• experimentation (controlled runs)

47

Concepts (2)
To isolate value origins, follow back the
dependences

Dependences can uncover code smells such as

• uninitialized variables

• unused values

• unreachable code

Get rid of smells before debugging

48

Concepts (3)

To slice a program, follow dependences from
a statement S to find all statements that

• could be influenced by S (forward slice)

• could influence S (backward slice)

46

47

48

49

Concepts (4)
Using deduction alone includes a number of
risks, including code mismatch, sbstracting
away, and imprecision.

Any deduction is limited by the halting
problem and must thus resort to
conservative approximation.

For debugging, deduction is best combined
with actual observation.

50

This work is licensed under the Creative Commons Attribution License. To view a copy of this license, visit

http://creativecommons.org/licenses/by/1.0

or send a letter to Creative Commons, 559 Abbott Way, Stanford, California 94305, USA.

49

50

