
1

Model-Based Testing

Alexander Pretschner
TU Kaiserslautern and Fraunhofer IESE

Saarbrücken, 31/05/2010

Model-Based Testing, 31/5/2010, Alexander Pretschner 2

Motivation

► The oracle problem
►Automatically deriving tests that include fine-granular

expected output information:
more than robustness testing

►Specifications (expected output) tend to be bad

► Common “methodologies” for deriving test cases are,
because of their level of abstraction, not too helpful
► “Build partitions”—but that’s the nature of the beast

► Process of deriving tests not reproducible and not
systematic; bound to the ingenuity of single engineers

2

Model-Based Testing, 31/5/2010, Alexander Pretschner 3

Overview

► Motivation

► Models and Abstraction

► Scenarios

► Selection Criteria

► Generation Technology

► Cost Effectiveness and Evidence

► Summary

Model-Based Testing, 31/5/2010, Alexander Pretschner 4

Goal of Today’s Class

► Understand the ideas of model-based testing

► Understand where you have to think about its deployment

► Know what it can do and what it can’t

► Know where and not automation is likely to be possible

► Be able to, in principle, conceive a set-up for model-based
testing in your context
►Decide on abstraction, build model, decide on test

selection criteria, perform test case generation, execute
generate tests, judge what you did

►Clearly, that’s domain-specific

3

Model-Based Testing, 31/5/2010, Alexander Pretschner 5

Testing

test cases

system

environment

Understanding of
specification,
mental model

Model-Based Testing, 31/5/2010, Alexander Pretschner 6

Model-Based Testing

test cases

explicit
behavior model

test case specification

validation

verification model‘s output
= system‘s output?

AG ϕ⇒ψ

system

environment

4

Model-Based Testing, 31/5/2010, Alexander Pretschner 7

Test Generation and Execution

1 2 3 4

run

4

3

2

1
system

1

4

3

2
model

test case
4

3

2

1

test execution

Model-Based Testing, 31/5/2010, Alexander Pretschner 8

Levels of Abstraction

test cases

concretization (I)
abstraction (O)
comparison

Umwelt

AG ϕ⇒ψ

γ

α

complexity
distributed between

model and driver

test case specification

system

environment

5

Model-Based Testing, 31/5/2010, Alexander Pretschner 9

Levels of Abstraction: Example

test
cases
test

cases

concreti-
zation

concreti-
zation

comp-
arison

comp-
arison

AskRandom(19) ResRand(19)

<< 81 84 00 00 13 >>
<< 12 47 A4 A8 E5 38

62 6F 09 22 83 22 B9 3E
F2 3F 5E 85 60 90 00 >>

„AskRandom“

card specific data
(keys, PINs)

card specific data
(keys, PINs)

Slide: Jan Philipps

Model-Based Testing, 31/5/2010, Alexander Pretschner 10

Example II: Autonomous Parking

Functionality

Abstract Functionality:

Don’t enter collision area

Taken from Buehler, Wegener: Evolutionary Functional
Testing of an Automated Parking System, CCCT’03

6

Model-Based Testing, 31/5/2010, Alexander Pretschner 11

Flavors of Model-Based Testing

Utting, Pretschner, Legeard: A taxonomy of MBT, technical report 04/2006, University of Waikato, May 2006

Model-Based Testing, 31/5/2010, Alexander Pretschner 12

Difficult Questions

► What is modeled? How are models validated?

► What is tested, and how is this specified?

► How are test cases computed and executed?

► Do explicit behavior models yield better and cheaper
products?
►Or is it better to just define test cases?
►E.g., test cases in XP serve as specification

► Aren’t reviews or inspections more efficient and effective?

7

Model-Based Testing, 31/5/2010, Alexander Pretschner 13

Overview

► Models

► Scenarios

► Selection Criteria

► Generation Technology

► Cost Effectiveness and Evidence

► Summary

Model-Based Testing, 31/5/2010, Alexander Pretschner 14

test cases

explicit
behavior model

test case specification

validation

verification model‘s output
= system‘s output?

AG ϕ⇒ψ

system

environment

8

Model-Based Testing, 31/5/2010, Alexander Pretschner 15

Implementation and Environment
► Models of (partial) environment often necessary

►SW almost always based on assumptions
(⇒ integration/system tests)

►Simulation, test case generation

4

3

2

1

Model-Based Testing, 31/5/2010, Alexander Pretschner 16

Abstraction: Models of SUT and Environment

Utting, Pretschner, Legeard: A taxonomy of MBT, technical report 04/2006, University of Waikato, May 2006

9

Model-Based Testing, 31/5/2010, Alexander Pretschner 17

Purpose of Abstractions

► Insights into a system

► Specification

► Encapsulated access to parts of a system

► Communication among developers

► Code generation

► Test case generation

► …

Model-Based Testing, 31/5/2010, Alexander Pretschner 18

One: Models encapsulate Details

► Like “abstractions” in programming languages:
subroutines, exceptions, garbage collection, Swing
► No or “irrelevant” loss of information

- “macro expansion”
- Example: MDA for communication infrastructure

► Separation of concerns, orthogonality

► Matlab-Simulink-like
► Block diagrams: architecture and behavior
► 1:1 representation of a differential equation
► Encapsulation of concrete computation

► Helpful for MBT but not sufficient if validation of model is done by
simulation only
► Is it easier to test a Java program than to test the corresponding

bytecode?

10

Model-Based Testing, 31/5/2010, Alexander Pretschner 19

Two: Models omit Details

► Simplification with “relevant” loss of information

► Intellectual mastery; “refinement”

► “Complexity essential, not accidental” [Brooks’87]

► Functionality, Data, Scheduling, Communication,
Performance

Model-Based Testing, 31/5/2010, Alexander Pretschner 20

Abstractions I

► Function
►Restriction to a particular function(ality)
►Detection of feature interactions?

► Data
►No loss of information: binary numbers → integers
►Loss of information: equivalence classes → 1 symbol

► Communication
►ISO/OSI stack:

complex interaction at bottom → 1 (inter-)action above
►Corba, J2EE

11

Model-Based Testing, 31/5/2010, Alexander Pretschner 21

Abstractions II

► Time (more general: QoS)
► Ignore physical time; nondeterministic timeouts
►Granularity of time

► Permutations of sequences of signals (underspecification
in the model)

► Implies natural restrictions w.r.t. tests

Model-Based Testing, 31/5/2010, Alexander Pretschner 22

Levels of Abstraction

► Model as precise as SUT—directly validate SUT!

► Reuse of model components?
►Validate integrated model

► Reuse of environment models?
►Directly test SUT

► Parametrization of the model?
► Informal inductive argument

► One model as reference implementation?
►Conformance tests—why not directly use test cases?

12

Model-Based Testing, 31/5/2010, Alexander Pretschner 23

Behavior Models

► Executability helps with validation
►Prototypes
►Some disagree: carrying out proofs is much better for

validation

► Behavior models need not be executable
►E.g., specification of a sorted array
►Quantifiers very powerful modeling abstractions

► Many specification styles; many boil down to pre and
postconditions
► “declarative” rather than “operational”

► Doesn’t impact our analysis of model-based testing

Model-Based Testing, 31/5/2010, Alexander Pretschner 24

So what?

► Encapsulation helpful if model is to be reviewed (not
simulated/tested)

► But models for test case generation must be written down
►Appropriate languages
►SUT and environment

► Models “better” since “simpler”
►But complexity essential, not accidental
►Missing information must be given by a human

► Simplifying models for test case generation rather than for
code generation!

13

Model-Based Testing, 31/5/2010, Alexander Pretschner 25

Example – Part I

► Chip card

► Components encapsulate
behavior and private data
state

► Communication
exclusively via channels

► Structure motivated by
functional decomposition

Philipps et al., Model-based Test Case Generation for Smart Cards, Proc. FMICS’03

Model-Based Testing, 31/5/2010, Alexander Pretschner 26

Example – Part I

► Behavior of one
CardHolderVerification component

► Wrong PIN increases PIN counter

► Max PIN counter → card blocked

► Extended Finite State Machine
Transitions i?X∧γ ∧ o!Y∧α

14

Model-Based Testing, 31/5/2010, Alexander Pretschner 27

Example – Part I

► Environment models
►Restrict possible input

output

Model-Based Testing, 31/5/2010, Alexander Pretschner 28

Example – Part I – Abstraction

► Function: rudimentary file system

► Random numbers: “rnd”

► No actual computation of crypto operations
►Driver

► Abstract commands
►No testing at the level of corrupt APDUs
►Done separately

► No hardware-based attacks

15

Model-Based Testing, 31/5/2010, Alexander Pretschner 29

Example – Part I – Abstraction

Test
sequences

Test
sequences

Concreti-
zation

Concreti-
zation

Compa-
rison

Compa-
rison

„ PSOVerifyDigSig“

PSOVerifyDigSig(SigCA)
ResVerifyDigSig(

KeyPubCA,
DigCA,
SigCA)

<< 81 2A 00 A8 83 9E
81 ...

(Signature of CA) >>
<< 90 00 >>

MSE: Public
Key and

Digest of CA

Card specific data
(keys, PINs)

Card specific data
(keys, PINs)

Slide: Jan Philipps

Model-Based Testing, 31/5/2010, Alexander Pretschner 30

Overview

► Models

► Scenarios

► Selection Criteria

► Generation Technology

► Cost Effectiveness and Evidence

► Summary

16

Model-Based Testing, 31/5/2010, Alexander Pretschner 31

test cases

explicit
behavior model

test case specification

validation

verification model‘s output
= system‘s output?

AG ϕ⇒ψ

system

environment

Model-Based Testing, 31/5/2010, Alexander Pretschner 32

Scenario I: Tests and Code generated from 1 Model

Testfälle α/γ

Requirements

Env. assumptions
Code generator

Test cases

GenerationGeneration

Model

AG ϕ⇒ψ

Test case specs HW, OS, Legacy

Code

HW, OS, Legacy

17

Model-Based Testing, 31/5/2010, Alexander Pretschner 33

Discussion: One Model for Both

► Generation: no redundancy → no verification
► “exceptions” don’t occur—model is valid, generator as well (or is it?)

► Tests for
► Code generators (simulation and production)—MDD
► Assumptions on the environment
► Possibly performance/stress
► Exceptions

► Models valid → that‘s alright!
► Different flavor of MBT
► No “double check” model ⇔ implementation

► Abstraction levels
► Test and development models
► Model as basis for manual implementation

Model-Based Testing, 31/5/2010, Alexander Pretschner 34

Scenario II: Two Models

Model

Testfälle

Requirements

AG ϕ⇒ψ

Test case specs

Test cases

Redundancy

HW, OS, Legacy

Code

HW, OS, Legacy
α/γ

Model

Generation

Generation,
Manual Build

18

Model-Based Testing, 31/5/2010, Alexander Pretschner 35

Discussion: Two Models

► Expensive

► Redundancy

► Different levels of abstraction

► Both tests and code profit from the (alleged) advantages of
model-based development

► Precise specifications
►Car manufacturers and suppliers
►Behavior models lead to better specifications
►Model alone no (good) specification

Model-Based Testing, 31/5/2010, Alexander Pretschner 36

Scenario III: Model only for TC Generation

Model

Testfälle

Requirements

AG ϕ⇒ψ

Test case specs

Test cases

Redundancy

HW, OS, Legacy

Code

HW, OS, Legacy
α/γ

Generation

Manual
Build

Specification

19

Model-Based Testing, 31/5/2010, Alexander Pretschner 37

Discussion: model for test only

► Redundancy

► Expensive; concentration on critical parts possible (?)

► Interleaving code/model with changing requirements

► Specification doesn’t profit from benefits of model-based
development

► Assessment of new model-based testing technology

► “Conformance” tests: suppliers must show adherence to
model

► Scenario of our running chip card example

Model-Based Testing, 31/5/2010, Alexander Pretschner 38

Scenario IV: Model Extraction from Code

Model

Testfälle

Requirements

AG ϕ⇒ψ

Test case specs

Test cases

poss. redundancy

HW, OS, Legacy

Code

HW, OS, Legacy
α/γ

Generation

Manual
Build

Specification

Extraction

20

Model-Based Testing, 31/5/2010, Alexander Pretschner 39

Discussion: Model Extraction

► Abstractions always bound to purpose and domain:
automation?

► Automatic generation: redundancy?

► Interleaving code/model?

► Ex-post development of tests

► Assessment of new generation technology with manual
extraction

► Tests for “exception/no exception” possible

Model-Based Testing, 31/5/2010, Alexander Pretschner 40

Continuous Testing

► Assume execution and analysis of tests come at no cost
►Generation of tests in the background
►Execution of tests in the background
►Abstraction level possibly exceptions/no exceptions

► Maturity of software
►Too many detected errors → tedious analysis

► Embedded systems
►Execution takes time
►Simulators
►Business information systems are different

21

Model-Based Testing, 31/5/2010, Alexander Pretschner 41

Summary I

► 1 model for both
►No redundancy, no double check
► “Test models” different from “development models”
►Cf. argument on using abstract models

► 2 distinct models
►Redundancy
►Expensive
►Different levels of abstraction possible

Model-Based Testing, 31/5/2010, Alexander Pretschner 42

Summary II

► 1 model for tests
►Redundancy
►Changing requirements: interleaving model and code

development?
►OEM builds model, suppliers have to conform to it

► 1 model from code
►Redundancy?
►Ex-post development of test cases only

► [Pretschner’05]

22

Model-Based Testing, 31/5/2010, Alexander Pretschner 43

And in the real world?

► Model-based testing in the hardware industry
►Need for redundancy is acknowledged
►Reluctance in the SW industry!

► Stochastic testing: reliability engineering

► Continuous systems in Matlab: test code generators

► Models primarily built for test case generation:
stage of case studies

► For SW, I haven’t encountered the situation where two
distinct models are built ($$$)

► Generate tests to validate models is rather common

Model-Based Testing, 31/5/2010, Alexander Pretschner 44

Overview

► Models

► Scenarios

► Selection Criteria

► Generation Technology

► Cost Effectiveness and Evidence

► Summary

23

Model-Based Testing, 31/5/2010, Alexander Pretschner 45

test cases

explicit
behavior model

test case specification

validation

verification model‘s output
= system‘s output?

AG ϕ⇒ψ

system

environment

Model-Based Testing, 31/5/2010, Alexander Pretschner 46

Test Purpose and Test Case Specification

► Familiar problem …
► Irrelevant if model-based or not

► Test cases: selected “relevant” traces

► What‘s “relevant“? What‘s “good“?

► Test purpose informal, TC spec formal

24

Model-Based Testing, 31/5/2010, Alexander Pretschner 47

Test purpose, TC specification, test case

► TC spec. formalizes test purpose and renders it operational
►E.g., an invariant cannot directly be tested

Test purpose

TC Spec.

Test Case

Requiremts spec

Specification

Implementation

informal

intensional

extensional

Model-Based Testing, 31/5/2010, Alexander Pretschner 48

Selection Criteria

functional structural stochasticad-hoc

X

fault-based

25

Model-Based Testing, 31/5/2010, Alexander Pretschner 49

Summary

► Functional criteria
►Specific to domain or application; requirements
►Methodological support

► Structural criteria
► Independent of domain
►Data flow, control flow, data
►Automatic generation of TC specs and test cases
►Measurable
►Ability to reveal faults unclear
►Models of SUT and environment

Model-Based Testing, 31/5/2010, Alexander Pretschner 50

Summary II

► Stochastic criteria
►Uniform distributions: “purely at random”
►User profiles
► In general, not “worse” than structural criteria

► People tend to agree that there’s not one single good
criterion!

26

Model-Based Testing, 31/5/2010, Alexander Pretschner 51

Test Case Generation

► Search problem

► Techniques
►Dedicated algorithms for dedicated criteria
►(Bounded) model checking
►Deductive theorem proving
►Symbolic execution
►[Lucio’05]

Model-Based Testing, 31/5/2010, Alexander Pretschner 52

Search Problem

► Enumerate traces and select w.r.t. TC specification

► Respect constraints during enumeration
►Functional criteria

► General problem: find traces that cover
edges/nodes/special data values in the control flow and
data flow graphs
►Structural criteria
►Directed/heuristic search

► Often, it is a good idea not to visit states twice
►State storage

► Minimization of test suites not covered today

27

Model-Based Testing, 31/5/2010, Alexander Pretschner 53

Overview

► Models

► Scenarios

► Selection Criteria

► Generation Technology

► Cost Effectiveness and Evidence

► Summary

Model-Based Testing, 31/5/2010, Alexander Pretschner 54

Assumptions

► Effectiveness and cost effectiveness
►Models help with getting requirements/specs straight
►Test suite vs. model: creation and maintenance

► Existence of adequate level of abstraction
►Abstraction and precision
►Easy model validation and maintenance
►Distribution of complexity

► Reuse
►Simpler changes in the model (plus push button)
►Adaptor and environment models/TC specifications

28

Model-Based Testing, 31/5/2010, Alexander Pretschner 55

Evidence: (Cost) Effectiveness

► “Model-Based Testing does find errors”

► Different/more errors in SUT?
►Farchi et al. ’02, Pretschner et al. ’05
►Except for last study: no precise description of reference
►Ongoing dispute on comparison with reviews

► Errors in model or specs

► Cost Effectiveness
►Farchi et al. ’02, Bernard et al.’04, Sinha et al. ’06
► “building tests took less time”

► In sum: hard to admit, but very little evidence!
►But: neither empirical evidence about benefits of OO

software

Model-Based Testing, 31/5/2010, Alexander Pretschner 56

Coverage?

► Unsettled discussion on benefits of structural criteria
► Inconclusive studies on both control and data flow
►Not surprisingly, using such a criterion “leads to failures

that would have gone undetected”
►DO-178B recommends MC/DC for level A software

► Unclear if things change when used on specifications

► People agree: structural tests complement functional tests

29

Model-Based Testing, 31/5/2010, Alexander Pretschner 57

Empirical Evidence

► Compare any “new” approach to random tests and
“traditionally developed tests”

► Homogeneous systems?
►Domain
►Stage of development
►Programming language
►Skills of programmers
►Complexity

► As always: generalization?!

Model-Based Testing, 31/5/2010, Alexander Pretschner 58

(Personal) Summary and Gut Feel

► Don’t rely on structural criteria only!
► Large state spaces, big problems, anyway!

► Abstract models for testing for exceptions might be cost-effective
► Run tests in the background

► Continuous testing if at no cost

► Model-Based Testing does find additional failures
► But it’s not entirely clear if these wouldn’t also have been found as

a result of carefully studying the specs

► Model in itself definitely helps (XP: tests are spec/model)

► Not necessarily automated generation

► Plenty of other low-level problems in the real world

30

Model-Based Testing, 31/5/2010, Alexander Pretschner 59

Overview

► Models

► Scenarios

► Selection Criteria

► Generation Technology

► Cost Effectiveness and Evidence

► Summary

Model-Based Testing, 31/5/2010, Alexander Pretschner 60

Summary

► Model of SUT and environment at different levels of
abstraction
►Abstraction compulsory
►Oracle

► Possibly automated test generation with environment
model (statistical testing; structual criteria on encoded
scenarios) and structure of model of the SUT
►But we still need to tell the machine what a good test

consists of!

► Different scenarios

► Different generation technologies

► As usual, little evidence …

31

Model-Based Testing, 31/5/2010, Alexander Pretschner 61

My Personal Bottom Line

► Go for it! I do eat my own cooking!

► Don’t use it to write a script; model a stack?

► Use of models beyond testing important
►Specifications, contracts for suppliers/OEM
►Cost-effectiveness unlikely if nobody uses models

anyway

► Different levels of abstraction are acceptable

► Not so sure about automation

► Enforcement of test rationales can help tremendously

► Use knowledge on earlier failures; user profiles

Model-Based Testing, 31/5/2010, Alexander Pretschner 62

Literature

► M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, A. Pretschner, “Model-Based Testing of
Reactive Systems”, Springer Verlag, 2005
► S. Sandberg, “Homing and Synchronizing Sequences”, chapter 1 in [Broy et al.’05]
► M. Krichen, “State Identification”, chapter 2 in [Broy et al.’05]
► H. Björklund, “State Verification, chapter 3 in [Broy et al.’05]
► A. Gargantini, “Conformance Testing”, chapter 4 in [Broy et al.’05]
► A. Pretschner, J. Philipps, “Methodological Issues in Model-Based Testing”, chapter

10 in [Broy et al.’05]
► L. Lucio and M. Samer, “Technology of Test-Case Generation”, chapter 12 in [Broy

et al.’05]
► A. Pretschner, W. Prenninger, S. Wagner, C. Kühnel, M. Baumgartner, B. Sostawa, R.

Zölch, T. Stauner: One Evaluation of Model-Based Testing and its Automation, Proc.
ICSE 2005, pp. 392—401, 2005

► E. Farchi, A. Hartman, S. S. Pinter, Using a model-based test generator to test for
standard conformance, IBM Systems Journal 41 (1):89-110, 2002

► E. Bernard, B. Legeard, X. Luck, F. Peureux, Generation of test sequences from formal
specifications: GSM 11.11 standard case-study, SW Practice and Experience 34
(10):915 – 948, 2004

► A. Sinha, C. Williams, P. Santhanam, A measurement framework for evaluating model-
based test generation tools, IBM Systems Journal 45(3):501-514, 2006

