
Andreas Zeller

The Scientific Method

2

How

Thursday, May 27, 2010, 16:15–17:45
Saarland University, Campus E1 3, HS002

James A. Whittaker, Engineering Director

Tests Software

3

1

Google releases software many
times every day. Ever wonder what
it takes to test in such an
environment? James Whittaker talks
about test methodology, tools and
innovation surrounding the
discipline of quality assurance at
Google where testers are far
outnumbered by developers.
Specifically he will present how the
webapp-chrome-chromium stack is
tested to ensure that Google apps
work well on Chrome browser and
Chromium operating system. During
the talk he presents how Google
treats testing activity much like a

2

Everything typed into T-
Mobile G1 was taken as a
shell command (i.e.
“reboot”)

http://crave.cnet.co.uk/mobiles/
0,39029453,49299782,00.htm

Recent T-Mobile G1 update has
caused a peculiar side-effect
that's proving rather
embarrassing for Google. RC29,
as the update is known, causes
certain text entered into the G1 to
run commands.3

4

A Sample Program

sample 9 8 7$
Output: 7 8 9

sample 11 14$
Output: 0 11

Where’s the error that causes this failure?

5

int main(int argc, char *argv[])
{
 int *a;
 int i;

 a = (int *)malloc((argc - 1) * sizeof(int));
 for (i = 0; i < argc - 1; i++)
 a[i] = atoi(argv[i + 1]);

 shell_sort(a, argc);

 printf("Output: ");
 for (i = 0; i < argc - 1; i++)
 printf("%d ", a[i]);
 printf("\n");

 free(a);

 return 0;
}

6

static void shell_sort(int a[], int size)
{
 int i, j;
 int h = 1;
 do {
 h = h * 3 + 1;
 } while (h <= size);
 do {
 h /= 3;
 for (i = h; i < size; i++)
 {
 int v = a[i];
 for (j = i; j >= h && a[j - h] > v; j -= h)
 a[j] = a[j - h];
 if (i != j)
 a[j] = v;
 }
 } while (h != 1);
}

4

5

6

7

Errors

What’s the error in the sample program?

• An error is a deviation from what’s
correct, right, or true. (IEEE glossary)

To prove that something is an error, we must
show the deviation:

• Simple for failures, hard for the program

Where does sample.c deviate from – what?

8

Causes and Effects
What’s the cause of the sample failure?

• The cause of any event (“effect”) is a
preceding event without which the effect
would not have occurred.

To prove causality, one must show that

• the effect occurs when the cause occurs

• the effect does not occur when the cause
does not.

9

Establishing Causality

In natural and social sciences, causality is
often hard to establish.

• Did drugs cause the death of Elvis?

• Does CO₂ production cause global
warming?

• Did Saddam Hussein cause the war in Iraq?

7

8

9

10

Repeating History

• To determine causes formally, we would
have to repeat history – in an alternate
world that is as close as possible to ours.

• Since we cannot repeat history, we have to
speculate what would have happened.

• Some researchers have suggested to drop
the concept of causality altogether

11

Repeating Runs

In computer science, we are luckier:

• Program runs can be controlled and
repeated at will
(well, almost: physics can’t be repeated)

• Abstraction is kept to a minimum – the
program is the real thing.

12

“Here’s the Bug”

• Some people are good at guessing causes!

• Unfortunately, intuition is hard to grasp:

• Requires a priori knowledge

• Does not work in a systematic and
reproducible fashion

• In short: Intuition cannot be taught

10

11

12

13

The Scientific Method

• The scientific method is a general pattern of
how to find a theory that explains (and
predicts) some aspect of the universe

• Called “scientific method” because it’s
supposed to summarize the way that
(experimental) scientists work

14

The Scientific Method
1. Observe some aspect of the universe.

2. Invent a hypothesis that is consistent with
the observation.

3. Use the hypothesis to make predictions.

4. Tests the predictions by experiments or
observations and modify the hypothesis.

5. Repeat 3 and 4 to refine the hypothesis.

15

A Theory
• When the hypothesis explains all

experiments and observations, the
hypothesis becomes a theory.

• A theory is a hypothesis that

• explains earlier observations

• predicts further observations

• In our context, a theory is called a diagnosis
(Contrast to popular usage, where a theory is a vague guess)

13

14

15

16

Mastermind

• A Mastermind game is
a typical example of
applying the scientific
method.

• Create hypotheses
until the theory
predicts the secret.

Scientific Method

Hypothesis

Problem Report

Code

Run

More Runs

Prediction Experiment

Hypothesis is supported:
refine hypothesis

Hypothesis is rejected:
create new hypothesis

Diagnosis

Observation
+ Conclusion

18

A Sample Program

sample 9 8 7$
Output: 7 8 9

sample 11 14$
Output: 0 11

Let’s use the scientific method to debug this.

16

17

18

19

Initial Hypothesis

Hypothesis

Prediction

Experiment

Observation

Conclusion

“sample 11 14” works.

Output is “11 14”

Run sample as above.

Output is “0 11”

Hypothesis is rejected.

20

int main(int argc, char *argv[])
{
 int *a;
 int i;

 a = (int *)malloc((argc - 1) * sizeof(int));
 for (i = 0; i < argc - 1; i++)
 a[i] = atoi(argv[i + 1]);

 shell_sort(a, argc);

 printf("Output: ");
 for (i = 0; i < argc - 1; i++)
 printf("%d ", a[i]);
 printf("\n");

 free(a);

 return 0;
}

Does a[0] = 0 hold?

21

Hypothesis 1: a[]

Hypothesis

Prediction

Experiment

Observation

Conclusion

The execution causes a[0] = 0

At Line 37, a[0] = 0 should hold.

Observe a[0] at Line 37.

a[0] = 0 holds as predicted.

Hypothesis is confirmed.

19

20

21

22

static void shell_sort(int a[], int size)
{
 int i, j;
 int h = 1;
 do {
 h = h * 3 + 1;
 } while (h <= size);
 do {
 h /= 3;
 for (i = h; i < size; i++)
 {
 int v = a[i];
 for (j = i; j >= h && a[j - h] > v; j -= h)
 a[j] = a[j - h];
 if (i != j)
 a[j] = v;
 }
 } while (h != 1);
}

Is the state sane here?

23

Hypothesis 2:
shell_sort()

Hypothesis

Prediction

Experiment

Observation

Conclusion

The infection does not take
place until shell_sort.

At Line 6, a[] = [11, 14]; size = 2

Observe a[] and size at Line 6.

a[] = [11, 14, 0]; size = 3.

Hypothesis is rejected.

24

Hypothesis 3: size

Hypothesis

Prediction

Experiment

Observation

Conclusion

size = 3 causes the failure.

Changing size to 2 should make
the output correct.

Set size = 2 using a debugger.

As predicted.

Hypothesis is confirmed.

22

23

24

25

 shell_sort(a, argc); shell_sort(a, argc - 1); shell_sort(a, argc);

int main(int argc, char *argv[])
{
 int *a;
 int i;

 a = (int *)malloc((argc - 1) * sizeof(int));
 for (i = 0; i < argc - 1; i++)
 a[i] = atoi(argv[i + 1]);

 ...
}

Fixing the Program

sample 11 14$
Output: 11 14

26

Hypothesis 4: argc

Hypothesis

Prediction

Experiment

Observation

Conclusion

Invocation of shell_sort with
size = argc causes the failure.
Changing argc to argc - 1 should
make the run successful.
Change argc to argc - 1 and
recompile.

As predicted.

Hypothesis is confirmed.

27

The Diagnosis

• Cause is “Invoking shell_sort() with argc”

• Proven by two experiments:

• Invoked with argc, the failure occurs;

• Invoked with argc – 1, it does not.

• Side-effect: we have a fix
(Note that we don’t have correctness – but take my word)

25

26

27

28

Explicit Debugging

• Being explicit is
important to
understand the
problem.

• Just stating the problem
can already solve it.

29

Keeping Track

• In a Mastermind game,
all hypotheses and
observations are
explicit.

• Makes playing the game
much easier.

30

Implicit Debugging

• Remember your last debugging session:
Did you write down hypotheses and
observations?

• Not being explicit forces you to keep all
hypotheses and outcomes in memory

• Like playing Mastermind in memory

http://
www.varsityclub.harvard.ed
u/Logos/teddy.gif

28

29

30

32

Keep a Notebook
Everything gets written down, formally, so
that you know at all times

• where you are,

• where you've been,

• where you're going, and

• where you want to get.

Otherwise the problems get so complex you
get lost in them.

33

What to Keep

Hypothesis

Prediction

Experiment

Observation

Conclusion

Faced with a difficult task,
“sleeping on it” makes students

three times more apt
to solve the task the next morning.

31

32

@Article{wagner/etal/2004/
nature,
 author = 	 {Ullrich
Wagner and Steffen Gais
and Hilde Haider and Rolf
Verleger and Jan Born},
 title = 	 {Sleep inspires
insight},
 journal = 	 {Nature},
 year = 	 2004,
 volume =	 427,
 pages =	 {325--355}
}

33

34

Quick and Dirty

• Not every problem needs the strength of
the scientific method or a notebook – a
quick-and-dirty process suffices.

• Suggestion: Go quick and dirty for
10 minutes, and then apply the scientific
method.

Algorithmic Debugging

35

✘

Is this correct?

✔

Is this correct?

✘

Is this correct?

✔

Is this correct?

✔

Defect

Algorithmic Debugging

1. Assume an incorrect result R with origins
O1, O2, …, On

2. For each Oi, enquire whether Oi is correct

3. If some Oi is incorrect, continue at Step 1

4. Otherwise (all Oi are correct), we found
the defect

36

34

35

36

37

def insert(elem, list):
 if len(list) == 0:
 return [elem]
 head = list[0]
 tail = list[1:]
 if elem <= head:
 return list + [elem]
 return [head] + insert(elem, tail)

def sort(list):
 if len(list) <= 1:
 return list
 head = list[0]
 tail = list[1:]
 return insert(head, sort(tail))

38

sort([2, 1, 3])

sort([1, 3])

sort([3]) insert(1, [3])

insert(2, [3, 1])

sort([3]) = [3] insert(1, [3]) = [3,1]

sort([1, 3]) = [3,1] insert(2, [3, 1]) = [2, 3,1]

sort([2, 1, 3]) = [2, 3, 1]

Is this
correct?

Is this
correct?

Is this
correct?

Is this
correct?

✔

✘

✘

✘

39

insert(1, [3])insert(1, [3]) = [3,1] ✘

• insert() produces an incorrect result and
has no further origins:

• It must be the source of the incorrect value

Defect Location

37

38

39

40

def insert(elem, list):
 if len(list) == 0:
 return [elem]
 head = list[0]
 tail = list[1:]
 if elem <= head:
 return list + [elem]
 return [head] + insert(elem, tail)

def sort(list):
 if len(list) <= 1:
 return list
 head = list[0]
 tail = list[1:]
 return insert(head, sort(tail))

[elem] + list

41

Discussion

✔ Detects defects systematically

✔ Works naturally for logical + functional
computations

✘ Won’t work for large states (and
imperative computations)

✘ Do programmers like being driven?

Oracles

• In algorithmic debugging, the user acts as an
oracle – telling correct from false results

• With an automatic oracle could isolate any
defect automatically.

• How complex would such an oracle be?

42

40

41

42

43

Obtaining a Hypothesis

Hypothesis

Problem Report

Code

Run

More Runs

Deducing from

Observing a

Learning from

…all in the next weeks!

Earlier Hypotheses
+ Observations

44

Sources of Hypotheses

Deduction

Observation

Induction

Experimentation

0 runs

1 run

n runs

n controlled runs

45

Concepts

A cause of any event (”effect”) is a
preceding event without which the effect
would not have occurred.

To isolate a failure cause, use the
scientific method.

Make the problem and its solution explicit.

43

44

45

46

Concepts

Algorithmic debugging organizes the
scientific method by having the user
assess outcomes

Best suited for functional and logical
programs

47

This work is licensed under the Creative Commons Attribution License. To view a copy of this license, visit

http://creativecommons.org/licenses/by/1.0

or send a letter to Creative Commons, 559 Abbott Way, Stanford, California 94305, USA.

46

47

