
Andreas Zeller

Detecting Anomalies

2

Tracing Infections

✘

• For every infection, we must find the earlier
infection that causes it.

• Which origin should we focus upon?

3

Tracing Infections

✘

1

2

3

4

Focusing on Anomalies

✘

• Examine origins and locations where
something abnormal happens

What’s normal?

• General idea: Use induction – reasoning
from the particular to the general

• Start with a multitude of runs

• Determine properties that are common
across all runs

5

What’s abnormal?

• Suppose we determine common properties
of all passing runs.

• Now we examine a run which fails the test.

• Any difference in properties correlates with
failure – and is likely to hint at failure causes

6

4

5

6

Detecting Anomalies

7

Run

Run

RunRunRunRun
✔ ✘

Properties Properties

Differences correlate with failure

Properties

8

Data properties that hold in all runs:

• “At f(), x is odd”

• “0 ≤ x ≤ 10 during the run”

Code properties that hold in all runs:

• “f() is always executed”

• “After open(), we eventually have close()”

Comparing Coverage

1. Every failure is caused by an infection,
which in turn is caused by a defect

2. The defect must be executed to start the
infection

3. Code that is executed in failing runs only is
thus likely to cause the defect

9

7

8

9

10

The middle program

middle 3 3 5$
middle: 3

middle 2 1 3$
middle: 1

11

int main(int arc, char *argv[])
{
 int x = atoi(argv[1]);
 int y = atoi(argv[2]);
 int z = atoi(argv[3]);
 int m = middle(x, y, z);

 printf("middle: %d\n", m);

 return 0;
}

12

int middle(int x, int y, int z) {
 int m = z;
 if (y < z) {
 if (x < y)
 m = y;
 else if (x < z)
	 m = y;
 } else {
	 if (x > y)
	 m = y;
	 else if (x > z)
	 m = x;
 }
 return m;
}

10

11

12

13

Obtaining Coverage
for C programs

x 3 1 3 5 5 2
y 3 2 2 5 3 1
z 5 3 1 5 4 3

• • • • • •
• • • • • •
• • • • • •

•
•

• • •
• •
• • •

•
•

• • • • • •
✔ ✔ ✔ ✔ ✔ ✘

14

int middle(int x, int y, int z) {
 int m = z;
 if (y < z) {
 if (x < y)
 m = y;
 else if (x < z)
	 m = y;
 } else {
	 if (x > y)
	 m = y;
	 else if (x > z)
	 m = x;
 }
 return m;
}

15

Discrete Coloring

executed only in failing runs

executed in passing and failing runs

executed only in passing runs

highly suspect

ambiguous

likely correct

13

14

15

x 3 1 3 5 5 2
y 3 2 2 5 3 1
z 5 3 1 5 4 3

• • • • • •
• • • • • •
• • • • • •

•
•

• • •
• •
• • •

•
•

• • • • • •
✔ ✔ ✔ ✔ ✔ ✘

16

int middle(int x, int y, int z) {
 int m = z;
 if (y < z) {
 if (x < y)
 m = y;
 else if (x < z)
	 m = y;
 } else {
	 if (x > y)
	 m = y;
	 else if (x > z)
	 m = x;
 }
 return m;
}

x 3 1 3 5 5 2
y 3 2 2 5 3 1
z 5 3 1 5 4 3

• • • • • •
• • • • • •
• • • • • •

•
•

• • •
• •
• • •

•
•

• • • • • •
✔ ✔ ✔ ✔ ✔ ✘

int middle(int x, int y, int z) {
 int m = z;
 if (y < z) {
 if (x < y)
 m = y;
 else if (x < z)
	 m = y;
 } else {
	 if (x > y)
	 m = y;
	 else if (x > z)
	 m = x;
 }
 return m;
}

17

18

Continuous Coloring

executed only in failing runs

passing and failing runs

executed only in passing runs

16

17

18

19

Hue

hue(s) = red hue+
%passed(s)

%passed(s)+ %failed(s)
× hue range

0% passed 100% passed

20

Brightness
frequently executed

rarely executed

bright(s) = max
(

%passed(s),%failed(s)
)

x 3 1 3 5 5 2
y 3 2 2 5 3 1
z 5 3 1 5 4 3

• • • • • •
• • • • • •
• • • • • •

•
•

• • •
• •
• • •

•
•

• • • • • •
✔ ✔ ✔ ✔ ✔ ✘

int middle(int x, int y, int z) {
 int m = z;
 if (y < z) {
 if (x < y)
 m = y;
 else if (x < z)
	 m = y;
 } else {
	 if (x > y)
	 m = y;
	 else if (x > z)
	 m = x;
 }
 return m;
}

21
Source: Jones et al., ICSE 2002

19

20

21

22 Source: Jones et al., ICSE 2002

23

Evaluation

How well does comparing coverage detect
anomalies?

• How green are the defects? (false negatives)

• How red are non-defects? (false positives)

Space

• 8000 lines of executable code

• 1000 test suites with156–4700 test cases

• 20 defective versions with one defect each
(corrected in subsequent version)

24

22

23

24

25

18 of 20 defects are
correctly classified in the
“reddest” portion of the

code

Source: Jones et al., ICSE 2002

26

The “reddest” portion is at
most 20% of the code

Source: Jones et al., ICSE 2002

Siemens Suite

• 7 C programs, 170–560 lines

• 132 variations with one defect each

• 108 all yellow (i.e., useless)

• 1 with one red statement (at the defect)

27 Source: Renieris and Reiss, ASE 2003

25

26

27

Nearest Neighbor

28

Run

Run

RunRunRunRun
✔ ✘

Nearest Neighbor

29

Run

Run

RunRunRunRun
✔ ✘

Compare with the single run
that has the most similar coverage

✔

30

Locating Defects

0

25

50

75

100

0 <10 <20 <30 <40 <50 <60 <70 <80 <90 <100

Nearest Neighbor Intersection

%
 o

f f
ai

lin
g

te
st

s

% of executed source code to examine

Renieris+Reiss (ASE 2003)

R
es

ul
ts

 o
bt

ai
ne

d
fr

om
 S

ie
m

en
s

te
st

 s
ui

te
; c

an
 n

ot
 b

e
ge

ne
ra

liz
ed

Jones et al. (ICSE 2002)

28

29

30

Sequences

31

open() read() close() ✔

open() close() read() ✘

close() open() read() ✘

Sequences of locations can correlate with failures:

…but all locations are executed in both runs!

32

The AspectJ Compiler

ajc Test3.aj$
java test.Test3$

test.Test3@b8df17.x Unexpected Signal : 11
occurred at PC=0xFA415A00
Function name=(N/A) Library=(N/A) ...
Please report this error at http://
java.sun.com/...
$

Coverage Differences

33

• Compare the failing run with passing runs

• BcelShadow.getThisJoinPointVar() is
invoked in the failing run only

• Unfortunately, this method is correct

31

32

33

Sequence Differences

34

This sequence occurs only in the failing run:

〈

ThisJoinPointVisitor.isRef(),

ThisJoinPointVisitor.canTreatAsStatic(),

MethodDeclaration.traverse(),

ThisJoinPointVisitor.isRef(),

ThisJoinPointVisitor.isRef()

〉

Defect location

Collecting Sequences

35

mark read read skip read read skip read

mark read

read read

read skip

skip read

read read

read skip

skip read

mark read

read read

read skip

skip read

Trace

Sequences Sequence Set

anInputStreamObj

InputStream

Ingoing vs. Outgoing

36

aProducer aQueue aLinkedList

add
add

aConsumer

isEmpty
size

get

firstElement

removeFirst
isEmpty

size

add

add
add

add

incoming
calls

outgoing
calls

aLogger

add

34

35

36

Anomalies

37

1.0

0.5
0

0.5

0.5 0.5
1.0

passing run passing run

failing run

0.60

0.50

0.40

ranking by average weightweights

NanoXML

38

• Simple XML parser written in Java

• 5 revisions, each with 16–23 classes

• 33 errors discovered or seeded

Locating Defects

39

0

25

50

75

100

0 1 2 3 4 5 6 7 8 9

AMPLE/window size 8

classes to examine (of 16)

%
 o

f f
ai

lin
g

te
st

s

on average 0.5 classes
less than window size 1

R
es

ul
ts

 o
bt

ai
ne

d
fr

om
 N

an
oX

M
L;

 c
an

 n
ot

 b
e

ge
ne

ra
liz

ed

Dallmeier et al. (ECOOP 2005)

37

38

39

40

Properties

41

Data properties that hold in all runs:

• “At f(), x is odd”

• “0 ≤ x ≤ 10 during the run”

Code properties that hold in all runs:

• “f() is always executed”

• “After open(), we eventually have close()”

Techniques

42

Dynamic
Invariants

Value
Ranges

Sampled
Values

40

41

42

Techniques

43

Dynamic
Invariants

Value
Ranges

Sampled
Values

Dynamic Invariants

44

Run

Run

RunRunRunRun
✔ ✘

At f(), x is odd At f(), x = 2

Invariant Property

Daikon

45

• Determines invariants from program runs

• Written by Michael Ernst et al. (1998–)

• C++, Java, Lisp, and other languages

• analyzed up to 13,000 lines of code

43

44

45

public int ex1511(int[] b, int n)
{
 int s = 0;
 int i = 0;
 while (i != n) {
 s = s + b[i];
 i = i + 1;
 }
 return s;
}

Postcondition
b[] = orig(b[])
return == sum(b)

Precondition
n == size(b[])
b != null
n <= 13
n >= 7

Daikon

46

• Run with 100 randomly generated arrays
of length 7–13

Daikon

47

RunRunRunRunRun

Trace

InvariantInvariantInvariantInvariant

✔

get trace

filter invariants

report resultsPostcondition
b[] = orig(b[])
return == sum(b)

Getting the Trace

48

RunRunRunRunRun

Trace

✔

• Records all variable values at all function
entries and exits

• Uses VALGRIND to create the trace

46

47

48

Filtering Invariants

49

Trace

InvariantInvariantInvariantInvariant

• Daikon has a library of
invariant patterns over
variables and constants

• Only matching patterns are
preserved

Method Specifications

50

x = 6 x ∈ {2, 5, –30} x < y

y = 5x + 10 z = 4x +12y +3 z = fn(x, y)

A subseq B x ∈ A sorted(A)

using primitive data

using composite data

checked at method entry + exit

Object Invariants

51

string.content[string.length] = ‘\0’

node.left.value ≤ node.right.value

this.next.last = this

checked at entry + exit of public methods

49

50

51

Matching Invariants

52

A == B

s size(b[])

n

public int ex1511(int[] b, int n)
{
 int s = 0;
 int i = 0;
 while (i != n) {
 s = s + b[i];
 i = i + 1;
 }
 return s;
}

sum(b[])

return
orig(n)

Pattern

Variables

…

== s n size
(b[])

sum
(b[])

orig
(n) ret

s

n

size(b[])

sum(b[])

orig(n)

ret

Matching Invariants

53

s

i
n

A == B

s size(b[])

nsum(b[])

return
orig(n)

Pattern

Variables

…

run 1

✘

✘

✘

✘

✘

✘

✘

✘

✘✘

== s n size
(b[])

sum
(b[])

orig
(n) ret

s

n

size(b[])

sum(b[])

orig(n)

ret

Matching Invariants

54

s

i
n

A == B

s size(b[])

nsum(b[])

return
orig(n)

Pattern

Variables

…

✘

✘

✘ ✘

✘

✘

✘✘

✘

✘

run 2

✘

✘

✘

✘

✘

✘

✘

✘

✘

✘

52

53

54

== s n size
(b[])

sum
(b[])

orig
(n) ret

s

n

size(b[])

sum(b[])

orig(n)

ret

Matching Invariants

55

s

i
n

A == B

s size(b[])

nsum(b[])

return
orig(n)

Pattern

Variables

…

✘

✘

✘ ✘

✘

✘

✘✘

✘

✘

run 3

✘

✘

✘

✘

✘

✘

✘

✘

✘

✘

== s n size
(b[])

sum
(b[])

orig
(n) ret

s

n

size(b[])

sum(b[])

orig(n)

ret

Matching Invariants

56

s == sum(b[])

✘

✘

✘ ✘

✘

✘

✘✘

✘

✘

✘

✘

✘

✘

✘

✘

✘

✘

✘

✘

s == ret

n == size(b[])

ret == sum(b[])

Matching Invariants

57

s == sum(b[])

s == ret

n == size(b[])

ret == sum(b[])

public int ex1511(int[] b, int n)
{
 int s = 0;
 int i = 0;
 while (i != n) {
 s = s + b[i];
 i = i + 1;
 }
 return s;
}

55

56

57

Enhancing Relevance

• Handle polymorphic variables

• Check for derived values

• Eliminate redundant invariants

• Set statistical threshold for relevance

• Verify correctness with static analysis

58

Daikon Discussed

• As long as some property can be observed,
it can be added as a pattern

• Pattern vocabulary determines the
invariants that can be found (“sum()”, etc.)

• Checking all patterns (and combinations!)
is expensive

• Trivial invariants must be eliminated

59

Techniques

60

Dynamic
Invariants

Value
Ranges

Sampled
Values

polymorphic variables:
treat “object x” like “int x”
if possible
derived values: have “size
(…)” as extra value to
compare against
redundant invariants: like x
> 0 => x >= 0
statistical threshold: to
eliminate random
occurrences
verify correctness: to make
sure invariants always hold

58

59

60

Dynamic Invariants

61

Run

Run

RunRunRunRun
✔ ✘

At f(), x is odd At f(), x = 2

Invariant Property

Can we check this
on the fly?

Diduce

62

• Determines invariants and violations

• Written by Sudheendra Hangal and Monica
Lam (2001)

• Java bytecode

• analyzed > 30,000 lines of code

Diduce

63

Run

Run

RunRunRunRun
✔ ✘

Invariant Property

Training mode Checking mode

61

62

63

Training Mode

64

RunRunRunRunRun
✔

Invariant

• Start with empty set
of invariants

• Adjust invariants
according to values
found during run

Invariants in Diduce
For each variable, Diduce has a pair (V, M)

• V = initial value of variable

• M = range of values: i-th bit of M is cleared
if value change in i-th bit was observed

• With each assignment of a new value W,
M is updated to M := M ∧ ¬ (W ⊗ V)

• Differences are stored in same format

65

Training Example

66

Code i ValuesValues DifferencesDifferences Invariant

i = 10 1010 1010 1111 – – i = 10

i += 1 1011 1010 1110 1 1111 10 ≤ i ≤ 11 ∧ |i′ – i| =
1i += 1 1100 1010 1000 1 1111 8 ≤ i ≤ 15 ∧ |i′ – i| = 1

i += 1 1101 1010 1000 1 1111 8 ≤ i ≤ 15 ∧ |i′ – i| = 1

i += 2 1111 1010 1000 1 1101 8 ≤ i ≤ 15 ∧ |i′ – i| ≤
2

V M V M

During checking, clearing an M-bit is an anomaly

64

65

66

67

• Less space and time requirements

• Invariants are computed on the fly

• Smaller set of invariants

• Less precise invariants

Diduce vs. Daikon

Techniques

68

Dynamic
Invariants

Value
Ranges

Sampled
Values

Detecting Anomalies

69

Run

Run

RunRunRunRun
✔ ✘

Properties Properties

Differences correlate with failure

How do we collect
data in the field?

67

68

69

Liblit’s Sampling

70

• We want properties of runs in the field

• Collecting all this data is too expensive

• Would a sample suffice?

• Sampling experiment by Liblit et al. (2003)

Return Values

• Hypothesis: function return values correlate
with failure or success

• Classified into positive / zero / negative

71

CCRYPT fails

• CCRYPT is an interactive encryption tool

• When CCRYPT asks user for information
before overwriting a file, and user responds
with EOF, CCRYPT crashes

• 3,000 random runs

• Of 1,170 predicates, only file_exists() > 0
and xreadline() == 0 correlate with failure

72

70

71

72

Liblit’s Sampling

73

RunRunRunRunRun
✔

Properties

• Can we apply this
technique to remote
runs, too?

• 1 out of 1000 return
values was sampled

• Performance loss <4%

0 500 1000 1500 2000 2500 3000
0

20

40

60

80

100

120

140

Number of successful trials used

N
u

m
b

e
r

o
f

"g
o

o
d

"
fe

a
tu

re
s
 l
e

ft

Failure Correlation

74

After 3,000 runs,
only five predicates are left

that correlate with failure

Web Services

75

• Sampling is first choice for web services

• Have 1 out of 100 users run an
instrumented version of the web service

• Correlate instrumentation data with failure

• After sufficient number of runs, we can
automatically identify the anomaly

73

74

75

Techniques

76

Dynamic
Invariants

Value
Ranges

Sampled
Values

Anomalies and Causes

77

• An anomaly is not a cause, but a correlation

• Although correlation ≠ causation,
anomalies can be excellent hints

• Future belongs to those who exploit

• Correlations in multiple runs

• Causation in experiments

0

20

40

60

80

0% <10% <20% <30%

10,0

57,0

77,0 79,0

10,0

42,0

64,0
70,0

5,0

35,0
41,0

48,0

0

16,0

25,0

37,0

78

Locating Defects

%
 o

f f
ai

lin
g

te
st

s

source code to examine

R
es

ul
ts

 o
bt

ai
ne

d
fr

om
 S

ie
m

en
s

te
st

 s
ui

te
; c

an
 n

ot
 b

e
ge

ne
ra

liz
ed

NN (Renieris + Reiss, ASE 2003) CT (Cleve + Zeller, ICSE 2005)
SD (Liblit et al., PLDI 2005) SOBER (Liu et al, ESEC 2005)

2 runs

5,542 runs

76

77

NN (Nearest Neighbor)
@Brown by Manos Renieris
+ Stephen Reiss
CT (Cause Transitions)
@Saarland by Holger Cleve
+ Andreas Zeller
SD (Statistical Debugging)
@Berkeley by Ben Liblit
(now Wisconsin), Mayur
Naik (Stanford), Alice
Zheng, Alex Aiken (now
Stanford), Michael Jordan
SOBER @Urbana-
Champaign + Purdue by
Liu, Yan, Fei, Han, Midkiff

78

79

Concepts

Comparing coverage (or other features)
shows anomalies correlated with failure

Nearest neighbor or sequences locate
errors more precisely than just coverage

Low overhead + simple to realize

80

Concepts (2)

Comparing data abstractions shows
anomalies correlated with failure

Variety of abstractions and implementations

Anomalies can be excellent hints

Future: Integration of anomalies + causes

81

This work is licensed under the Creative Commons Attribution License. To view a copy of this license, visit

http://creativecommons.org/licenses/by/1.0

or send a letter to Creative Commons, 559 Abbott Way, Stanford, California 94305, USA.

79

80

81

