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class Roots {
    // Solve ax2 + bx + c = 0
    public roots(double a, double b, 
double c)
    { … }

    // Result: values for x
    double root_one, root_two;
}

Testing can show the 
presence but not the 
absence of errors.

Dijkstra’s law

Remember the Roots example? 
Having a million computers doing a 
million tests per second would be 
sufficient to test the Roots example 
four times during the lifetime of the 
sun. Clearly, exhaustive testing is 
not feasible in practice. 

Because we cannot do testing 
exhaustively, we can only sample 
test cases. Therefore, we can 
never be sure that our program is 
free of bugs. Because showing the 
absence of bugs is impossible, the 
aim of testing is to show that there 
are bugs. Testing is successful if 
we find bugs (even though this is 
sometimes indicated with a red 
light in a GUI, suggesting 
otherwise).



Coverage Criteria
Possible test case

Coverage of...

Coverage criteria
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A coverage criterion describes a 
finite subset of test cases out of 
the vast/infinite number of 
possible tests we should 
execute.

We can measure coverage on 
any artifact produced during 
software development, e.g., 
structural coverage of source 
code, coverage of input space, 
coverage of complex inputs - 
e.g., grammar based, coverage 
of specification, coverage of test 
models, coverage of 
requirements, coverage of GUI 
elements, ...

A coverage criterion can be seen 
as a finite set of test 
requirements that a test suite 
should fulfill. There is usually 
more than one way to cover a 
test requirement, so a coverage 
criterion is not a unique 
description of a test suite.



Using coverage criteria

1. Adequacy: Have I got enough tests?

2. Guidance: Where should I test more?

3. Automation: Generate test that satisfies a 
test requirement

Measuring Code Coverage

Program 
under Test Test CasesCoverage 

Criterion

Instrumented
Program

Test 
Requirements

Test 
Requirement

Test 
Requirement

Test 
Requirements

Test 
Requirement

Covered 
Requirement

Instrumentation
• Instrument: Additional code that does not 

change functional behavior but collects 
information

public int min(A, B) {
  int m = A;
  if(A>B) {
    m = B;
  }
  return m;
}

public int min(A, B) {
  int m = A;
  if(A>B) {
    Mark: “if body reached”
    m = B;
  }
  return m;

Coverage criteria serve two 
main purposes: To measure 
adequacy of existing test suites, 
and to guide generation of new 
test cases. Even though 
coverage is often used to 
measure the quality of an 
existing test suite, coverage is 
not a good measurement for 
this. Generally, coverage is only 
good at telling you which parts 
haven’t been covered.

To make use of coverage in 
practice we need to measure it. 
This is done by instrumenting 
the source code with an 
instrument for every single test 
requirement, described by the 
coverage criterion. When test 
cases are run on the 
instrumented program the 
instrumentation keeps track of 
what has been executed and 
what hasn’t, and so at the end 
of the execution we can analyze 
this information to point to 
uncovered areas and quantify 
the coverage.

In general, instrumentation 
adds program code that does 
not change functional behavior 
but collects information. This 
instrumentation might, 
however, change other aspects 
of the program, such as timing, 
interleaving, etc.



Instrumentation
public int min(A, B) {
  statement[0]++;
  int m = A;
  statement[1]++;
  if(A>B) {
    statement[2]++;
    m = B;
  }
  statement[3]++;
  return m;
}

public int min(A, B) {
  int m = A;
  if(A>B) {
    m = B;
  }
  return m;
}

Coverage Value

Coverage value = 
# Covered test requirements 

# Total test requirements 

Coverage Value

Coverage value = 
# Covered test requirements 

# Total test requirements 

I’ve got 100% statement coverage on my 
program. How many bugs are left?

Here is an example of how to 
measure statement coverage: 
Before executing a statement 
we simply trace that the 
statement has been executed, 
for example by adding a static 
method call, incrementing a 
counter, etc.

Coverage is usually quantified 
as the percentage of test 
requirements satisfied. But what 
does that mean?

Coverage is usually quantified 
as the percentage of test 
requirements satisfied. But what 
does that mean?



The adequacy of a 
coverage criterion

can only be intuitively 
defined.

Weyuker’s
Hyopthesis

Coverage is dangerous
• Developers write test only to satisfy 

coverage

• 100% coverage can detect no faults:
Coverage measures what is executed, not what is checked

• Coverage metrics tell you what code is not 
tested, but cannot accurately tell you what 
code is tested:

• Low coverage means code is not well tested

• But high coverage does not mean code is well 
tested

Coverage is useful

• It always tells you where you haven’t tested

• Testing everything a bit is better than not 
testing most of the program - unless you 
know where the faults are

• Coverage != coverage
Stricter criterion → more tests

• More tests = more chances of hitting bugs

...at the end of the day, we still 
don’t know what we’ve achieved 
by satisfying a coverage 
criterion.

The use of coverage has some 
dangerous aspects, that might 
even reduce the quality of 
testing. If success is only 
quantified in a coverage metric, 
developers will get very efficient 
and writing test cases that 
satisfy the coverage goals, but 
not at finding bugs. Also, it is 
possible to cover the entire 
program without detecting a 
single bug - testing is more 
than just input generation (see 
Mutation testing lecture).

Despite it’s downsides coverage 
has some useful sides: It is very 
efficient at telling you which 
parts of a program you haven’t 
tested at all. Intuitively, testing 
everything a little bit should be 
better than testing some aspect 
thoroughly and neglecting the 
rest - unless you already know 
where the bugs are (which you 
don’t in general).



Structural 
Criteria

Statement testing

Branch testing

Basic
condition testing

MCDC testing

Compound
condition testing

Path testing

Loop boundary
testing

Branch and
condition testingLCSAJ testing

Boundary
interior testing
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These criteria apply to 
all logical expressions
(not just source code)

Logic Coverage

if(((a>b) || C) && p(x)) 

  o.m();

else

  o.n();

Predicate

Clauses

EducationEducation IndividualIndividualIndividualIndividualIndividualIndividual
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PredicateClauses

Coming back to the family of 
structural coverage criteria, we can 
see that several of these criteria 
focus on the logical expressions in 
the source code. This is worth 
having a closer look at, since this is 
a recurring problem in software 
testing.

Because the criteria we are 
going to consider now are 
independent of source code we 
will adopt a slightly different 
nomenclature, to add some 
confusion. A logical expression 
is a predicate, and the predicate 
consists of clauses, conjoined 
by boolean operators (and, 
or, ...). A clause contains no 
boolean operators.

Predicates and clauses occur 
everywhere, not only in source 
code. For example, test models 
often consist mainly of logical 
expressions.



Predicate

Clauses

Translating from English
• “If you leave before 6:30 AM, take Braddock to 495, if you 

leave after 7:00 AM, take Prosperity to 50, then 50 to 495”

• time < 6:30 → path = Braddock ∨
• time > 7:00 → path = Prosperity

Incomplete!

Introduction to Software Testing, Ammann and Offut

Predicate Coverage (PC)

• For each predicate: 

• Have at least one test where it evaluates to true

• Have at least one test where it evaluates to false

• Also known as:

• Branch coverage

• Decision coverage

• Basic criterion

UML state charts, as another 
example, have predicates in 
terms of OCL expressions.

Why is testing logical expressions 
important? Thatʼs because they are 
difficult to get right. Translating 
from natural language to predicates 
is a process that is error prone, and 
natural language requirements are 
often incomplete.



Predicate Coverage

if(((a>b) || C) && p(x)) 

  o.m();

else

  o.n();

Predicate Coverage
a>b C p(x) ((a>b)||C)&&p

(x)1 t t t t
2 t t f f
3 t f t t
4 t f f f
5 f t t t
6 f t f f
7 f f t f
8 f f f f

Predicate Coverage
a>b C p(x) ((a>b)||C)&&p

(x)1 t t t t
2 t t f f
3 t f t t
4 t f f f
5 f t t t
6 f t f f
7 f f t f
8 f f f f

Clause does not 
change value

Predicate coverage is the most 
basic logical coverage criterion, 
and there are usually many 
different ways to satisfy it.

Predicate coverage is the most 
basic logical coverage criterion, 
and there are usually many 
different ways to satisfy it.

Predicate coverage is the most 
basic logical coverage criterion, 
and there are usually many 
different ways to satisfy it.



Clause Coverage (CC)

• For each clause in a predicate: 

• Evaluate to true

• Evaluate to false

• Also known as:

• Condition coverage

• Basic condition coverage

Clause Coverage
a>b C p(x) ((a>b)||C)&&p

(x)1 t t t t
2 t t f f
3 t f t t
4 t f f f
5 f t t t
6 f t f f
7 f f t f
8 f f f f

Clause Coverage
a>b C p(x) ((a>b)||C)&&p

(x)1 t t t t
2 t t f f
3 t f t t
4 t f f f
5 f t t t
6 f t f f
7 f f t f
8 f f f f

Predicate is 
not covered

Note that clause coverage does 
not guarantee that predicates 
also evaluate to true and false.



• For each predicate: 

• All possible valuations for the clauses

• Also known as:

• Multiple condition coverage

• Compound condition coverage

Combinatorial Coverage (CoC)

Combinatorial Coverage
a>b C p(x) ((a>b)||C)&&p

(x)1 t t t t
2 t t f f
3 t f t t
4 t f f f
5 f t t t
6 f t f f
7 f f t f
8 f f f f

2N tests for N clauses

a>b C p(x) ((a>b)||C)&&p
(x)1 t t t t

2 t t f f
3 t f t t
4 t f f f
5 f t t t
6 f t f f
7 f f t f
8 f f f fThe outcome of a<b does not matter

The most thorough logical 
coverage criterion is 
combinatorial coverage (CoC). 
This simply requires to explore 
all possible combinations of 
truth values.

In terms of our truth table this 
means all rows have to be 
executed. Note that this does 
not mean that the input space is 
completely covered: for 
example we only need to 
consider two possible outcomes 
for a>b.

CoC is thorough but 
problematic. The number of 
necessary tests to satisfy CoC is 
exponential to the number of 
clauses, and it is therefore not a 
practical criterion. To overcome 
this problem what we do is to 
focus on the most important 

The most interesting case for a 
clause is when the clause 
determines the outcome of the 
predicate. A clause determines 
the predicate if changing the 
truth value of only the clause 
will change the truth value of 
the predicate.



Clause Determination
• A clause ci in predicate p, called the major 

clause, determines p if and only if the values 
of the remaining minor clauses cj are such 
that changing ci changes the value of p

P = A ∨ B

if B = true, P is always true.

so if B = false, A determines P.

if A = false, B determines P.

P = A ∧ B

if B = false, P is always false.

so if B = true, A determines P.

if A = true, B determines P.

Active Clause Coverage
For each major clause ci, 

choose minor clauses cj, j != i, so that ci determines p.
TR has two requirements for each ci: 

ci evaluates to true and ci evaluates to false.

p = a ∨ b

1. a = true, b = false

2. a = false, b = false

3. a = false, b = true

4. a = false, b = false

Major clause

Major clause

Introduction to Software Testing, Ammann and Offut

Ambiguity
p = a ∨ (b ∧ c)

Major clause : a

a = true, b = false, c = true

a = false, b = false, c = false Is this allowed?

•This question caused confusion among testers for years
•Three separate criteria :

•Minor clauses do not need to be the same
•Minor clauses do need to be the same
•Minor clauses force the predicate to become true and false

Introduction to Software Testing, Ammann and Offut

ACC is basically what you 
already know as MCDC. For 
each clause ACC requires that 
there are test cases where the 
clause determines the outcome 
of the predicate, and the clause 
is true and false.

But it is not clear how exactly to 
interpret this. In fact, there are 
three different possible 
interpretations, and 
programmers have for years 
been uncertain which one of 
these versions is meant by 
“MCDC”.



General Active Clause Coverage

• For each clause c, choose minor clauses 
such that c determines the predicate

• Clause c has to evaluate to true and false

• Minor clauses don’t need to be the same

General Active Clause Coverage

a>b C p(x) ((a>b)||C)&&p
(x)1 t t t t

2 t t f f
3 t f t t
4 t f f f
5 f t t t
6 f t f f
7 f f t f
8 f f f f

Minor clauses can be different

Correlated Active Clause Coverage

• For each clause c, choose minor clauses 
such that c determines the predicate

• Clause c has to evaluate to true and false

• Predicate p has to evaluate to true and 
false

• Minor clauses don’t need to be the same

• Also known as:

• Masking MCDC

In the simplest case (GACC) 
there are no restrictions other 
than that the clause has to 
determine the predicate.

GACC does not guarantee PC, 
therefore a stricter version of 
GACC is CACC. This criterion 
simply adds the PC requirement 
to GACC.



Restricted Active Clause Coverage

• For each clause c, choose minor clauses 
such that c determines the predicate

• Clause c has to evaluate to true and false

• Predicate p has to evaluate to true and 
false

• Minor clauses have to be the same

• Common interpretation in avionic domain

• Why keep minor clauses identical?

CACC vs RACC

a b c a && (b || c)
1 T T T T

2 T T F T

3 T F T T

5 F T T F

6 F T F F

7 F F T F

a b c a && (b || c)
1 T T T T

5 F T T F

2 T T F T

6 F T F F

3 T F T T

7 F F T F

Major clause: a

9 possibilities 3 possibilities
Introduction to Software Testing, Ammann and Offut

Inactive Clause Coverage

• If a clause should not affect outcome 
(=inactive), then test whether it really 
doesn’t

• Again, question of identical minor clauses

• Also known as:

• Reinforced Condition/Decision Coverage 
(RCDC)

Finally, the third interpretation 
of MCDC is RACC, in which the 
minor clauses between two test 
cases for a major clause have to 
be identical.

It is not clear what the benefit 
of keeping minor clauses fixed 
really is, even though this has in 
the past been the most common 
interpretation. A main effect is 
that it makes testing much 
harder, so RACC is clearly 
preferable in practice.

Inactive clause coverage is 
complementary to ACC, in that 
it tests for the cases where a 
clause should not affect a 
predicate. For example, if we 
activate the brakes and 
accelerate at the same time we 
want to make sure that the 
acceleration has no effect on the 
system.



General Inactive Clause Coverage

• For each clause c in predicate p choose 
minor clauses such that c does not 
determine p

• c evaluates to true with p true

• c evaluates to false with p true

• c evaluates to true with p false

• c evaluates to false with p false

• Minor clauses may differ

General Inactive Clause Coverage

a>b C p(x) ((a>b)||C)&&p
(x)1 t t t t

2 t t f f
3 t f t t
4 t f f f
5 f t t t
6 f t f f
7 f f t f
8 f f f f

Major clause a>b

Restricted Inactive Clause Coverage

• For each clause c in predicate p choose 
minor clauses such that c does not 
determine p

• c evaluates to true with p true

• c evaluates to false with p true

• c evaluates to true with p false

• c evaluates to false with p false

• Minor clauses may not differ

There are two different flavors 
of ICC: With and without the 
requirement on fixed minor 
clauses.



Subsumption Hierarchy

CC PC

GACC

CACC

RACC

CoC

RICC

GICC

Infeasibility
• (a > b ∧ b > c) ∨ c > a

• (a > b) = true, (b > c) = true, (c > a) = true 
is infeasible

• Infeasible test requirements have to be 
recognized and ignored

• Recognizing infeasible test requirements is 
hard, and in general, undecidable

• More complex criteria also produce more 
infeasible test requirements

Best Effort Strategy

CC PC

GACC

CACC

RACC

CoC

RICC

GICC

Test Generation 
Fails

Try this 
instead

As always when defining 
coverage criteria, these criteria 
are related to each other. An 
arrow from one criterion to 
another means that the former 
subsumes the latter. This means 
that if we test for CoC, we will 
automatically satisfy all other 
coverage criteria as well.

Subsumption is, however, not 
always given: Sometimes test 
requirements are simply 
unsatisfiable. 

Determining infeasibility is 
undecidable, so what can we do 
in practice if we can’t find a test 
case for a particular test 
requirement? A simple solution 
is to use a best effort approach: 
If, after some time, we cannot 
find a test case for a test 
requirement, we simply turn to 
the next simpler version of the 
same predicate in the 
subsumption hierarchy.



There’s more!

((a>b) || C) && p(x)

((a>b) && p(x)) || (C && p(x))

D
N

F

Implicant Coverage

Corresponding Unique True Point and Near 
False Point Pair Coverage (CUTPNFP)

MUTP CUTP

MAX-A

MAX-BMUMCUT

Minimal 
MUMCUT

Logic Criteria on 
Source Code

• Predicates are derived from decision 
statements in programs

• In programs, most predicates have less than 
four clauses

• Wise programmers actively strive to keep 
predicates simple

• When a predicate only has one clause, 
COC, ACC, ICC, and CC all collapse to 
predicate coverage (PC)

• Reachability : Before applying the criteria on 
a predicate at a particular statement, we 
have to get to that statement

• Controllability : We have to find input 
values that indirectly assign values to the 
variables in the predicates

Logic Criteria on 
Source Code

We have seen a number of 
different logical coverage 
criteria, but there’s more. For 
example, if you assume that 
predicates are given in DNF or 
you convert the predicates to 
DNF there’s a whole new world 
of coverage possibilities. These 
criteria will not be subject of the 
course :-)

Predicates in source code are 
usually simple. If a predicate 
consists of only one clause, all 
of the coverage criteria collapse 
to PC.

Generating tests for logical 
coverage criteria offers some 
challenges: First, we need the 
program to execute the path 
that leads to the predicate 
(reachability). Second, we need 
input values that indirectly 
assign values such that the 
clauses evaluate as needed. For 
example, for the clause a<b we 
need to find suitable values for 
a and b.



Triangle Example

“A program reads three 
integer values. The three 
values are interpreted as 
representing the lengths of 
the sides of a triangle. The 
program prints a message 
that states whether the 
triangle is scalene, isosceles, 
or equilateral.”

    if (a <= 0 || b <= 0 || c <= 0) {
        return 4; // invalid
    }
    if (! (a + b > c && a + c > b && b + c > a)) {
        return 4; // invalid
    }
    if (a == b && b == c) {
        return 1; // equilateral
    }
    if (a == b || b == c || a == c) {
        return 2; // isosceles
    }
    return 3;  // scalene

    if (a <= 0 || b <= 0 || c <= 0) {
        return 4; // invalid
    }
    if (! (a + b > c && a + c > b && b + c > a)) {
        return 4; // invalid
    }
    if (a == b && b == c) {
        return 1; // equilateral
    }
    if (a == b || b == c || a == c) {
        return 2; // isosceles
    }
    return 3;  // scalene

P1

P2

P3

P4

Let’s have a look at this 
problem in the context of a 
simple program. The triangle 
example is sort of the testing 
“Hello world” example, and 
dates back to Myers’s classical 
book on software testing.

This is an example 
implementation of the triangle 
example. If one of the triangle 
sides is negative or the inputs 
don’t satisfy the triangle 
invariant, then we return invalid 
(4). If they’re equilateral we 
return 1, 2 if two sides are 
isosceles, and 3 if the triangle is 
scalene.



    if (a <= 0 || b <= 0 || c <= 0) {
        return 4; // invalid
    }
    if (! (a + b > c && a + c > b && b + c > a)) {
        return 4; // invalid
    }
    if (a == b && b == c) {
        return 1; // equilateral
    }
    if (a == b || b == c || a == c) {
        return 2; // isosceles
    }
    return 3;  // scalene

Always reachable

!P1

!P1 && !P2

!P1 && !P2 && !P3

P1

P2

P3

P4

Code transformation
if(a && b)

  S1;

else

  S2;

if (a)
{
  if(b)
    S1;
  else
    S2;
}
else
  S2;

Branch coverage:
(a, b), (a, !b), (!a, b)

Branch coverage:
(a, b), (a, !b), (!a, !b)

↯ 
not MCDC on other code

Branch:
(a,b), (!a, b)

MCDC:
(a, b), (a, !b), (!a, b)

Code transformation
if(a && b)

  S1;

else

  S2;

4:  iload_1 // a
5:  ifeq 28
8:  iload_2 // b
9:  ifeq 28  
17: invokestatic #3; // S1
20: goto 31
28: invokestatic #4; // S2
31: ...MCDC:

(a, b), (a, !b), (!a, b)

These four predicates are not 
independent. In fact, to reach 
any of the predicates we depend 
on the outcome of the 
preceding predicates. This is the 
problem of finding the right 
path through the control flow 
graph, viewed differently.

Where's the error in the 
program?

We can influence coverage 
criteria by the way we 
implement expressions in 
source code. For example, the 
two code snippets represent the 
identical code. In the first case, 
we need three test cases to 
achieve MCDC, and two to 
achieve branch coverage. In the 
second, branch coverage 
requires three test cases - 
branch coverage of the right 
snippet therefore means better 
testing then branch coverage of 
the left snippet. 

An example of when this is 
relevant is when coverage is 
measured on bytecode. This is 
actually sometimes required in 
industrial settings - but it 
affects the way coverage is 
defined and measured. In this 
example, coverage of the 
bytecode gives you less testing 
than coverage of the source 
code. (But does it make a 
difference?)



Logic Instrumentation
if(a && b) {

  // ...

} 

Mark_1(a,b);

if(a && b) {

  // ...

} 

void Mark_1(a,b) {
  if(a)
    if(b)
      covered[1]++;
    else
      covered[2]++;
  else
    // ...
} 

Structural 
Criteria

Statement testing

Branch testing

Basic
condition testing

MCDC testing

Compound
condition testing

Path testing

Loop boundary
testing

Branch and
condition testingLCSAJ testing

Boundary
interior testing
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• Even if the control flow is correct...

• ...data objects might not be available

• ...silly things can be done to data objects

To instrument for logical criteria 
we need some more 
instrumentation. Because of 
short circuit operators not all 
clauses might be evaluated in 
an expression. We therefore 
record the values of all clauses 
before entering a conditional 
statement.
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Figure 12.2: The control flow graph of function cgi decode from Figure 12.1

Draft version produced August 1, 2006
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Data Flow
• Definition

Variable declaration
Variable initialization
Variable assignment - left hand side of an expression
Values received by a parameter

• Use
Expressions
Parameter passing
Conditional statements
Returns

• P-use: Predicate-use (if, while, ...) 

• C-use: Computation-use (anything else)
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Definitions

Example control flow graph

During the life time of a 
variable, it can be defined and 
used. We further distinguish 
between predicate and 
computational use of data.

Here are all the definitions in 
the example control flow graph. 
Note that for pointers, eptr and 
*eptr count as two different 
variables.
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c

digit_high
digit_low

p-Uses

These are all the uses in the 
program.

The majority of the uses are 
computational uses.

Only few uses are p-uses - they 
can be found in if, while, etc 
statements.



Definition-Use Pairs

• Definition clear path
Path from def to use without another def

• Definition-Use pair (DU pair)
Definition+use with def clear path

• Definition-Use path (DU path)
A DU pair can have several different definition clear 
paths
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The main concept in data flow 
testing is a Definition Use pair. 
A definition use pair consists of 
a definition of a variable, a use 
of the same variable, and at 
least one definition-clear path 
from with the definition reaches 
the use without being redefined.
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• All-definitions

One DU path for each definition
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Coverage criteria
• All-definitions

One DU path for each definition

• All-c-uses
One DU path for each definition-c-use pair

• All-p-uses
One DU path for each definition-p-use pair

• All-c-uses-some-p-uses
One DU path for each definition-p-use pair
If there is no p-use, then one c-use

• All-p-uses-some-c-uses

Coverage criteria

• (All-Uses)
One DU path for each use

• All-DU-pairs
One DU path for each def-use pair
= All-p-uses +all-c-uses
also known as All-Uses

• All-DU-paths
All (simple) DU paths for each def-use pair

All-Def coverage is satisfied by 
choosing one definition-clear 
path for any of the def-use 
pairs for each definition.

All-Uses is sometimes 
interpreted as requiring one 
def-use path for each use, but 
the definition we are sticking to 
is the combination of All-P-
Uses and All-C-Uses.
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+
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Criteria

Path testing

Here are all the definition-clear 
paths we need for All-Uses 
coverage of the definition of 
dptr in block A.

Data-flow criteria are related to 
the structural criteria we already 
heard about.



Calculating DU pairs

• Searching all paths is not feasible

• Without loops, number of paths is 
exponential to number of nodes

• With loops....forget it

• →Reaching definitions

Reaching Definitions

• Forward analysis

• Definition d reaches use u if there is a 
definition clear path from d to u

ReachIn(Node) = ReachOut(Predecessors)
ReachOut(Node) = (ReachIn(Node) \ {Killed}) ∪ {Defined}

Reaching Definitions

• Initialize ReachOut for all nodes as {}

• working set = all nodes

• Repeat until working set is empty:

• Pick some node and recalculate

• If changed, add all successors to working 
set

ReachIn(Node) = ReachOut(Predecessors)
ReachOut(Node) = (ReachIn(Node) \ {Killed}) ∪ {Defined}
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ReachIn(I) = ReachOut(G)
ReachOut(I) = 
     ReachIn(I) \ {ok/A} ∪ {ok/I}

ReachIn(L) = ReachOut(H) ∪  
    ReachOut(I) ∪ ReachOut(E)
ReachOut(L) = ReachIn(L) \
    {dptr/A, eptr/A, dptr/L, eptr/L, 
     eptr/G} ∪ 
    {dptr/L, eptr/L, *dptr/L, *eptr/L}

ReachIn(G) = ReachOut(D)
ReachOut(G) = 
     ReachIn(G) \ {eptr/A, eptr/L}  
∪ {eptr/G, *eptr/G,
    digit_high/G, digit_low/G}

a[i] = 13;

k = a[j]; Is this a DU pair?

a[i] = 13;

if(i == j)

  k = a[i];

else

  k = a[j];

We can think of the snippet as 
follows to identify the possible 
def-use pair.



a[2] = 42;

i = b[2]; Is this a DU pair?

int[] a = new int[3];

int[] b = a;

Aliasing

• Aliasing of variables causes serious 
problems!

• Working things out by hand for anything 
but small methods is hopeless

• Compiler-based tools help in determining 
all DU paths

Instrumentation
1: int x = 0;

2: if(a && b) {

3:   // ...

4:   y = 2*x;

5: }

1: int x = 0;

   defCover[x] = 1;

2: if(a && b) {

3:   // ...

4:   y = 2*x;

     useCover[4, x,
     defCover[x]]++;

5: } 

Instrumentation for data flow 
criteria is simple, but requires 
to instrument at two spots: First 
we need to keep track of all 
currently active definitions, and 
then we keep track of the actual 
uses that were found.



Testing can show the 
presence but not the 
absence of errors.

Dijkstra’s law

Coverage of...

Subsumption Hierarchy

CC PC

GACC

CACC

RACC

CoC

RICC

GICC
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Figure 12.2: The control flow graph of function cgi decode from Figure 12.1
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