
Software Engineering
Andreas Zeller • Saarland University

Introduction to Debugging

The Problem

2

Facts on Debugging

• Software bugs cost ~60 bln US$/yr in US

• Improvements could reduce cost by 30%

• Validation (including debugging) can easily 
take up to 50-75% of the development time

• When debugging, some people
are three times as efficient than others

1

2

3



How to Debug
(Sommerville 2004)

Locate error Design 
error repair

Repair
error

Re-test
program

The Process
T
R
A
F
F
I
C

rack the problem
eproduce
utomate
ind Origins
ocus
solate
orrect

4

5

6



Tracking Problems
T
R
A
F
F
I
C

Tracking Problems

• Every problem gets entered
into a problem database

• The priority determines
which problem is handled next

• The product is ready
when all problems are resolved

T
R
A
F
F
I
C

Problem Life Cycle

UNCONFIRMED NEW ASSIGNED

REOPENED

VERIFIED CLOSED

INVALID

DUPLICATE

INVALID

DUPLICATE

FIXED

WORKSFORME

WONTFIX

NEW

FIXED

Status

Resulting
Resolution

RESOLVED

if resolution is FIXED

T
R
A
F
F
I
C

7

8

9



Reproduce

Program

Data

Interaction

Communication

Randomness Operating System

Concurrency

Physics

Debugger

T
R
A
F
F
I
C

Automate
    // Test for host
    public void testHost() {
	 int noPort = -1;
      assertEquals(askigor_url.getHost(), "www.askigor.org");
	 assertEquals(askigor_url.getPort(), noPort);
    }

    // Test for path
    public void testPath() {
	 assertEquals(askigor_url.getPath(), "/status.php");
    }

    // Test for query part
    public void testQuery() {
	 assertEquals(askigor_url.getQuery(), "id=sample");
    }

T
R
A
F
F
I
C

Automate

• Every problem should be
reproducible automatically

• Achieved via appropriate (unit) tests

• After each change, we re-run the tests

T
R
A
F
F
I
C

10

11

12



Finding Origins

1. The programmer creates 
a defect in the code.

2. When executed, the 
defect creates an infection.

3. The infection propagates.

4. The infection causes a 
failure.

T
R
A
F
F
I
C

✘

✘

✘ ✘

Variables

This infection chain must be traced 
back – and broken. t

✘

Not every defect creates an infection – not every infection results in a failure

Finding Origins
T
R
A
F
F
I
C

t

Variables

✔

✘

?
t

The Defect
T
R
A
F
F
I
C

t

Variables

✔

✘ t

✘

13

14

15



T
R
A
F
F
I
C

A Program State

T
R
A
F
F
I
C

Finding Origins

1. We start with a
known infection
(say, at the failure)

2. We search the infection 
in the previous state

T
R
A
F
F
I
C

✘

✘

✘ ✘

Variables

t

✘

16

17

18



T
R
A
F
F
I
C

T
R
A
F
F
I
C

A Program State

T
R
A
F
F
I
C

Search
T
R
A
F
F
I
C

19

20

21



Focus

During our search for infection, we focus upon 
locations that

• are possibly wrong
(e.g., because they were buggy before)

• are explicitly wrong
(e.g., because they violate an assertion)

Assertions are the best way to find infections!

T
R
A
F
F
I
C

Finding Infections
class Time {
public:
    int hour();     // 0..23
    int minutes();  // 0..59
    int seconds();  // 0..60 (incl. leap seconds)

    void set_hour(int h);
    …
}

Every time between 00:00:00 and 23:59:60 is valid

T
R
A
F
F
I
C

22

23

24



Finding Origins

void Time::set_hour(int h)
{
    assert (sane());  // Precondition
    …
    assert (sane());  // Postcondition
}

bool Time::sane()
{
    return (0 <= hour() && hour() <= 23) &&
           (0 <= minutes() && minutes() <= 59) &&
           (0 <= seconds() && seconds() <= 60);
}

T
R
A
F
F
I
C

Finding Origins
bool Time::sane()
{
    return (0 <= hour() && hour() <= 23) &&
           (0 <= minutes() && minutes() <= 59) &&
           (0 <= seconds() && seconds() <= 60);
}

sane() is the invariant of a Time object:

• valid before every public method

• valid after every public method

bool Time::sane()
{
    return (0 <= hour() && hour() <= 23) &&
           (0 <= minutes() && minutes() <= 59) &&
           (0 <= seconds() && seconds() <= 60);
}

T
R
A
F
F
I
C

Finding Origins

void Time::set_hour(int h)
{
    assert (sane());  // Precondition
    …
    assert (sane());  // Postcondition
}

• Precondition fails = Infection before method

• Postcondition fails = Infection after method

• All assertions pass = no infection

T
R
A
F
F
I
C

25

26

27



Complex Invariants
class RedBlackTree {
  …
  boolean sane() {
      assert (rootHasNoParent());
      assert (rootIsBlack());
      assert (redNodesHaveOnlyBlackChildren());
      assert (equalNumberOfBlackNodesOnSubtrees());
      assert (treeIsAcyclic());
      assert (parentsAreConsistent());

      return true;
  }
}

T
R
A
F
F
I
C

Assertions

t

✔

✘ t

✔
✔
✔
✔
✔
✔
✔

✔
✔
✔
✔
✔
✔
✔

✔
✔
✔
✔
✔
✔
✔

T
R
A
F
F
I
C

Focusing

• All possible influences must be checked

• Focusing on most likely candidates

• Assertions help in finding infections fast

T
R
A
F
F
I
C

28

29

30



Isolation

• Failure causes should be 
narrowed down systematically

• Use observation and experiments

T
R
A
F
F
I
C

Scientific Method
T
R
A
F
F
I
C

1. Observe some aspect of the universe.

2. Invent a hypothesis that is consistent with 
the observation.

3. Use the hypothesis to make predictions.

4. Tests the predictions by experiments or 
observations and modify the hypothesis.

5. Repeat 3 and 4 to refine the hypothesis.

T
R
A
F
F
I
C

Hypothesis

Problem Report

Code

Run

More Runs

Prediction Experiment Observation
+ Conclusion

Hypothesis is supported:
refine hypothesis

Hypothesis is rejected:
create new hypothesis

Diagnosis

Scientific Method

31

32

33



T
R
A
F
F
I
C

The execution causes a[0] = 0

At Line 37, a[0] = 0 should hold.

Observe a[0] at Line 37.

a[0] = 0 holds as predicted.

Hypothesis is confirmed.

Hypothesis

Prediction

Experiment

Observation

Conclusion

Explicit Hypotheses
T
R
A
F
F
I
C

The execution causes a[0] = 0

At Line 37, a[0] = 0 should hold.

Observe a[0] at Line 37.

a[0] = 0 holds as predicted.

Hypothesis is confirmed.

Kee
pin

g e
ve

ry
thi

ng
 in

 

mem
or

y i
s l

ike
 pl

ayi
ng

 

mast
er

mind
 bl

ind
!

Explicit Hypotheses
T
R
A
F
F
I
C

34

35

36



T
R
A
F
F
I
C

Isolate
T
R
A
F
F
I
C

• We repeat the search for infection origins 
until we found the defect

• We proceed systematically
along the scientific method

• Explicit steps guide the search – 
and make it repeatable at any time

Correction

Before correcting the defect, we must check 
whether the defect

• actually is an error and

• causes the failure

Only when we understood both, can we 
correct the defect

T
R
A
F
F
I
C

☠
The Devil’s Guide

to Debugging
Find the defect by guessing:

• Scatter debugging statements everywhere

• Try changing code until something works

• Don’t back up old versions of the code

• Don’t bother understanding what the 
program should do

T
R
A
F
F
I
C

37

38

39



☠
The Devil’s Guide

to Debugging

Don’t waste time understanding the problem.

• Most problems are trivial, anyway.

T
R
A
F
F
I
C

☠
The Devil’s Guide

to Debugging
Use the most obvious fix.

• Just fix what you see:

x = compute(y)
// compute(17) is wrong – fix it
if (y == 17)
    x = 25.15

Why bother going into compute()?

T
R
A
F
F
I
C

Successful Correction 
T
R
A
F
F
I
C

40

41

42



Homework
T
R
A
F
F
I
C

• Does the failure no longer occur?
(If it does still occur, this should come as a big surprise)

• Did the correction introduce new problems?

• Was the same mistake made elsewhere?

• Did I commit the change to version control 
and problem tracking?

The Process
T
R
A
F
F
I
C

rack the problem
eproduce
utomate
ind Origins
ocus
solate
orrect

Mehr zum Thema
ZELLER

FAILA Guide to Systematic Debugging

A N D R E A S  Z E L L E R

W
HY PROGRAM

S FAIL
A Guide to Systematic Debugging

WHY 
PROGRAMS

“The definitive book on debugging”
– WALTER F.  TICHY            

TU Karlsruhe

43

44

45



46

47

48



Failure Causes in GCC
Location Failure Cause

<Start> argv[3]
toplev.c:4755 name
toplev.c:2909 dump_base_name
c-lex.c:187 finput→_IO_buf_base
c-lex.c:1213 nextchar
c-lex.c:1213 yyssa[41]
c-typeck.c:3615 yyssa[42]
c-lex.c:1213 last_insn→fld[1].rtx→…→fld[1].rtx.code
c-decl.c:1213 sequence_result[2]→…→fld[1].rtx.code
combine.c:4271 x→fld[0].rtx→fld[0].rtx

49

50

51



Automatic Fixes!

Automatic Fixes

(a) Java Program (b) Failing and Passing Runs (c) Models

!

"

(d) Model Differences

X X

(e) Fix Candidates (f) Validated Fix

> bind()

In Socket.java,

line 356:> bind()

In Socket.java,

line 356:

< unbind()

In Dir.java,

line 356:

> bind()

In Socket.java,

line 356:

Automatic Fixes

(a) Java Program (b) Failing and Passing Runs (c) Models

!

"

(d) Model Differences

X X

(e) Fix Candidates (f) Validated Fix

> bind()

In Socket.java,

line 356:> bind()

In Socket.java,

line 356:

< unbind()

In Dir.java,

line 356:

> bind()

In Socket.java,

line 356:

52

53

54



Mining Object Behavior

InspectorsMutators

v: Vector

add(1) isEmpty()

remove(1) firstElement()

change state return state

Use static analysis to differentiate

Building Models

v: Vector

add(1) isEmpty()

false

• After each mutator call, we extract 
attributes and invoke the inspectors

• Extracted states form finite state machine

Building Models

add()

remove()

v: Vector

<init> isEmpty()

true
add(1)

isEmpty()

false
add(2)add(3)remove(1)remove(2)remove(3)

isEmpty()

true
1 2 3

<init>

isEmpty()

add()

remove()

¬isEmpty()

55

56

57



Building Models

¬isEmpty()

add()

remove()

add()

remove()

v: Vector

<init>

isEmpty()

Equivalence Classes

empty() ¬isEmpty()isEmpty()

add()

remove()

add()

remove()

<init>

boolean

true | false

numeric

< 0 | = 0 | > 0

object

null | class

size() = 0 size() > 0firstElement() 
== null

firstElement
()
!= 

Inspector type

States

Automatic Fixes

(a) Java Program (b) Failing and Passing Runs (c) Models

!

"

(d) Model Differences

X X

(e) Fix Candidates (f) Validated Fix

> bind()

In Socket.java,

line 356:> bind()

In Socket.java,

line 356:

< unbind()

In Dir.java,

line 356:

> bind()

In Socket.java,

line 356:

58

59

60



Automatic Fixes

(a) Java Program (b) Failing and Passing Runs (c) Models

!

"

(d) Model Differences

X X

(e) Fix Candidates (f) Validated Fix

> bind()

In Socket.java,

line 356:> bind()

In Socket.java,

line 356:

< unbind()

In Dir.java,

line 356:

> bind()

In Socket.java,

line 356:

• Bug #293: 
SocketBindTest 
fails

Mina

¬bound

handler ! null

localAddress ! null

¬bound

handler = null

localAddress ! null

¬bound

handler = null

localAddress = null

bound

handler ! null

localAddress ! null

setHandler()

bind()

<init>()

setLocalAddress()

unbind()

¬bound
handler ! null

localAddress = null

setHandler()

setLocalAddress()

unbind(),
getLocalAddress()
setLocalAddress()

bind()

setLocalAddress()

Object state

Transition in 
passing runs

Transition in 
failing run

• Multipurpose 
Infrastructure 
for Network 
Applications

Failing run calls unbind()
although not bound

Can we fix it?

61

62

63



Fix it!

¬bound

handler ! null

localAddress ! null

¬bound

handler = null

localAddress ! null

¬bound

handler = null

localAddress = null

bound

handler ! null

localAddress ! null

setHandler()

bind()

<init>()

setLocalAddress()

unbind()

¬bound
handler ! null

localAddress = null

setHandler()

setLocalAddress()

unbind(),
getLocalAddress()
setLocalAddress()

bind()

setLocalAddress()

Object state

Transition in 
passing runs

Transition in 
failing run

Call unbind() only if bound

Fix it!

¬bound

handler ! null

localAddress ! null

¬bound

handler = null

localAddress ! null

¬bound

handler = null

localAddress = null

bound

handler ! null

localAddress ! null

setHandler()

bind()

<init>()

setLocalAddress()

unbind()

¬bound
handler ! null

localAddress = null

setHandler()

setLocalAddress()

unbind(),
getLocalAddress()
setLocalAddress()

bind()

setLocalAddress()

Object state

Transition in 
passing runs

Transition in 
failing run

Call bind() before unbind()

64

65

66



Fix it!

¬bound

handler ! null

localAddress ! null

¬bound

handler = null

localAddress ! null

¬bound

handler = null

localAddress = null

bound

handler ! null

localAddress ! null

setHandler()

bind()

<init>()

setLocalAddress()

unbind()

¬bound
handler ! null

localAddress = null

setHandler()

setLocalAddress()

unbind(),
getLocalAddress()
setLocalAddress()

bind()

setLocalAddress()

Object state

Transition in 
passing runs

Transition in 
failing run

Call unbind() only if bound

Call bind() before unbind()

Validating Fixes

Call unbind() only if bound

Call bind() before unbind()

✔

✔

We validate fix candidates

1. On failing test

2. On entire test suite

Only validated fixes remain

All fix options must be validated:

Pachika
Suaheli for “fix”, “insert”

• Tool for automatic fixing of Java programs

• Takes a failing run and a test suite

• Produces either a validated fix – or nothing

• Available for download

67

68

69



Tracing Trace File Model
Overhead Size Mining
(factor) (MB) (s)

MINA 33 12 31
JDO 18 370 202
ASPECTJ 9 223 110
RHINO 26 11 8

Table 4: Tracing overhead and execution times for all subjects.

• We trace the execution of the passing run and search the trace
for executions of the crashing method. If at least one invoca-
tion is found, we mine models for all visible objects just like
for the failing run. If no invocation is found, we mine models
for all types that we mined models for in the failing run (cf.
Section 4).

• If the previous step yields at least one model, we run PACHIKA
to generate fixes as described in Section 5. Each candidate
fix is first checked against the failing test and then against the
test suite (cp. Section 6).

7.4 Performance
Table 4 lists information about overhead and execution times.

For MINA and JDO the results are for the failing run. For ASPECTJ
and RHINO, we give the average of all runs in the test suite for
the latest version used in the experiments. The tracing overhead
as expressed as the factor by which execution time increases when
tracing is turned on. The third column gives the execution time the
model miner takes to extract models for depth 1 (cp. Section 3.1).
The table does not list the time PACHIKA takes to generate fixes,
since it was always less than a second.

As is to be expected, tracing incurs a huge amount of runtime
overhead. Since both ASPECTJ and RHINO contain more than 1,000
tests, tracing and mining the test suite was the most time-consuming
part in our experiments.

7.5 Results
For RHINO, PACHIKA generates fix candidates for three out of

eight bugs. However, none of these fixes causes the failing test to
pass. We examined the results in detail and found two causes for
this:

• RHINO is considerably smaller than ASPECTJ and contains
only a very small number of classes that have complex mod-
els (see Section 8). Thus, PACHIKA finds only a small num-
ber of violations per bug.

• In many cases where a violation is found, technical restric-
tions such as the limitation to methods without parameters
prevent PACHIKA from generating a fix. We hope to remove
some of these restrictions in the near future and thus be able
to generate more fixes for RHINO.

The results for ASPECTJ are summarized in Table 5. For each
investigated bug, we give the number of candidate, potential and
validated fixes (cp. Section 6). PACHIKA generates fixes for 14 out
of 18 bugs. For 6 bugs, PACHIKA finds at least one fix that causes
the failing run to pass. For 3 out of those 6 bugs, there is at least one
validated fix. The following sections discuss each of those bugs in
detail.

Candidate Fixes Potential Validated

Bug Insert Delete Fixes Fixes

34858 420 50 0 0
43033 219 65 0 0
51322 112 190 56 1

67774 0 72 0 0
70619 6 1 0 0
75129 0 0 0 0
87376 20 218 0 0
107858 405 235 0 0
109614 0 0 0 0
120474 0 0 0 0
121616 123 0 38 1

125475 72 122 7 0
128237 283 4 123 0
131933 0 50 0 0
152631 0 783 0 0
158412 2895 310 0 0
158624 0 0 0 0
173602 17 13 7 1

Table 5: Results of the experimental evaluation for ASPECTJ.

For three bugs out of 18, PACHIKA is able to generate a fix that

fixes the failure and passes the regression test suite.

public void resolve(ClassScope upperScope) {

> // Fix from source repository

> if (binding == null) ignoreFurtherInvestigation = true;

> // Fix generated by PACHIKA

> if (binding == null) {

> return;

> }

if (munger == null) ignoreFurtherInvestigation = true;

if (ignoreFurtherInvestigation) return;

...

}

}

Figure 4: The defective method for bug 173602.

7.5.1 Checking for a null reference
The bug causes a NullPointerException to be thrown in method
resolve of type InterTypeMethodDeclaration. PACHIKA de-
tects a precondition violation for the invocation of resolve, namely
that bindingmust not be null. The delete method call strategy gen-
erates the fix as shown in Figure 4. The original fix also amounts to
a conditional return which additionally sets the ignoreFurtherInvestigation
flag. This flag is later used by ASPECTJ to stop processing of the
declaration object. However, not setting the flag in this situation
does not cause any problems, since none of the tests in the test
suite later fails.

7.5.2 Checking for error conditions
The bug causes a NullPointerException to be thrown in method
resovle of type ValidateAtAspectJAnnotationsVisitor. PACHIKA
detects a precondition violation for parameter methodDeclaration,
namely that the ignoreFurtherInvestigation flag which is re-
turned by hasErrors() returns true. The delete method strategy
generates a conditional return in case that the precondition is vio-
lated (Figure 5. In this case, the generated fix is equal to the fix
applied by the developers.

7.5.3 Invoking methods to set default state

AspectJ

• Compiler for 
AOP programs

• Great source 
of bugs

Bug 173602
   public void resolve(ClassScope upperScope) {
>     // Fix from source repository
>     if (binding == null) 
>        ignoreFurtherInvestigation = true;
>     // Fix generated by PACHIKA
>     if (binding == null)
>          return;
      if (munger == null)
           ignoreFurtherInvestigation = true;
      if (ignoreFurtherInvestigation) return;
          ...
      }
  } 

Bug 121616

   public boolean visit(MethodDeclaration md, 
                        ClassScope scope) {
 >   // Fix generated by PACHIKA
 >   // (same as in the source repository)
 >   if (methodDeclaration.hasErrors())
 >       return false;
     ContextToken tok = ...
     ...
   }

70

71

72



Bug 51322
public EclipseTypeMunger build(ClassScope cs)
{
    ...
       binding = classScope.referenceContext.
                    binding.resolveTypesFor(binding);
>      // Fix generated by PACHIKA
>      binding.constantPoolDeclaringClass().
>              addDefaultAbstractMethods();
>      binding.constantPoolDeclaringClass().methods();
>      // Fix from source repository
>      if (binding == null)
>          throw new AbortCompilation();
       ResolvedMember sig = new ResolvedMember(...);
       ...
}

Automatic Fixing

• Adaptive fix generation

• Assessing the impact of fixes

• Leveraging contracts

• Programs that fix themselves

http://www.st.cs.uni-saarland.de/models/

Summary

73

74

75


