
computer science

saarland
university

Universität des Saarlandes
Software Engineering Chair

Prof. Andreas Zeller
Gordon Fraser
David Schuler

2. Project: Mutation Testing
The task of this project is to (a) write a mutation testing tool, and (b) to enhance tests to detect
mutations.

1 Get the project
You can check out the project from our SVN repository. Your user name is your matriculation
number, and the password was sent to you by e-mail. The location of your repository for the
second project is:
https://prog2.cs.uni-saarland.de/debugging/students/project2/<MATR>

At the end of the project (27th May, at 23:59) the version in the repository will be graded.

2 Overview
The mutation testing tool works in 3 phases:

1. First, the mutations are applied to the source code.

2. Then, the transformed code is compiled and the tests are run for each mutation. At the
end of the run the test results for each mutation are written to disk.

3. Finally, the data from the previous step is read and analyzed.

The following sections give an overview over the project. For more details see also the Javadoc
comments, and the lecture on Mutation Testing.

2.1 Transforming files
MutationTransformer receives a list of Java source files that are mutated using the following
mutation operators (defined in enum MutationType):

Constant Replacement Every literal in the source code, which is not 0, is replaced with cor-
responding 0.

Relational Operator Replacement All occurrences of an operator are replaced with another
operator. Table 1 shows all operators that are mutated and their replacement operator.

In the transformed files all possible mutations are applied at once using mutant schemata.
This means that every mutated statement is guarded by a condition, such that at runtime either
the original or the mutated statement can be executed. For example, the condition a > b could
become mutation1Activated ? a < b : a > b.

1



Table 1: Mutations for operators
Operator Replacement

> <
≥ ≤
< >
≤ ≥

== ! =
! = ==

After all files are transformed, information about the applied mutations (MutationInfo) is
stored, such that it can later be read by MutationInfoReader. Each mutation is identified by the
compilation unit that it is applied to, the type of the mutation, the line it is applied in, and a
unique id.

3 Executing the mutants
MutationRunner runs the JUnit tests that are passed as arguments on all mutations applied in
the previous step. Therefore, a mutation is first activated. Then all tests are run. After all tests
are run it is recorded whether the mutation was detected (killed) or not. At the end of the run
the results are stored, and the mutation is deactivated.

Before activating the first mutation the tests are run with no mutation activated. If one of
the test cases fails, MutationRunner stops with a failure message that includes the names of the
failing tests. This also implies that none of the mutations gets a result, which means that the
getMutationResult() method returns null.

The command ant check-mutation runs integration tests for the mutation testing
tool. Before the first invocation mvn assembly:assembly has to be run once. The results of
the integration tests are summarized in the files check-mutation-failures.txt and
check-mutation-passing.txt in the target directory.

4 Detecting mutations
With the mutation testing tool the quality of tests can be analyzed. To this end, analyze your
tests for the org.apache.commons.math.stat.descriptive.moment.Variance class from the previ-
ous project, and if necessary enhance them in such a way that all detectable mutations in the
class are detected. The test suite AllTests in the testing.debugging.project2.mutation.math.tests
package should should include the enhanced tests. Note that we do not expect the mutation in
line 69, where the serialVersionUID is set, to be detectable.

Enjoy!

2


	Get the project
	Overview
	Transforming files

	Executing the mutants
	Detecting mutations

