
computer science

saarland
university

Universität des Saarlandes
Software Engineering Chair

Prof. Andreas Zeller
Gordon Fraser
David Schuler

1. Project: Code Coverage
The task of this project is to (a) write a tool that measures statement coverage, (b) create tests
that satisfy a coverage goal, and (c) use coverage information for fault localization.

1 Requirements
You need the following tools for the project:

• Java SE Development Kit (JDK), version ≥ 1.5.

• Ant http://ant.apache.org/

• Maven http://maven.apache.org/

• Subversion http://subversion.apache.org/

2 Set up the project
You can check out the project from our SVN repository. Your user name is your matriculation
number, and the password was sent to you by e-mail. The location of your repository for the
first project is:
https://prog2.cs.uni-saarland.de/debugging/students/project1/<MATR>

where <MATR> has to be replaced with your matriculation number. The command for checking
out the initial working copy is :
svn co --username <MATR>

https://prog2.cs.uni-saarland.de/debugging/students/project1/<MATR>

At the end of the project (13th May, at 23:59) the version in the repository will be graded.
The project can be built using maven, with the command mvn compile. Maven can also

create a project suitable for importing into eclipse with the command: mvn eclipse:eclipse.
For more details see the documentation on maven.

3 Code Coverage Tool
Your code coverage tool must work in 3 phases:

1. First, the source code is instrumented such that the execution of statements is logged.

2. Then, the instrumented code is compiled and the tests are run. At the end of the run the
coverage data is written out.

1

http://ant.apache.org/
http://maven.apache.org/
http://subversion.apache.org/


3. Finally, the data from the previous step is read and analyzed.

The following sections give an overview over the project, for more details see also the Javadoc
comments, and the lecture on Foundations of Testing 2.

3.1 Instrumenting files
The class CoverageTransformer receives a list of Java source files that should be instrumented.
For these files statements have to be added to the source code that log each source statement
that is executed. Then, the transformed files should be written to a directory that is specified via
the system property target.dir.

In this step, it should also be determined which of the statements can be covered. Therefore,
the system property coverage.dir gets passed, which gives a location where the data should be
written.

For parsing and instrumenting the source code we recommend to use the Eclipse AST
(Abstract Syntax Tree) parser. There are several tutorials that describe how to work with the
AST, for example:

http://tinyurl.com/y7zjoj7

3.2 Running the instrumented files
When the instrumented classes are run, the executed statements are logged, and at the end of the
run the collected data is written to disk. Therefore, the system property coverage.dir gets pas-
sed to the program. This property gives a location (directory) where the coverage information
should be written.

3.3 Tracing test names
For JUnit 4 Tests, it should also be traced which test executes which statements. Therefore, the
tests have to be run with a customized test runner. This test runner is CoverageTestRunner. It
should run the tests, trace the tests that are run, and log whether a test passed or failed. This
functionality is also tested in the integration test of the fault localizer.

3.4 Reading the coverage data
The class CoverageDataReader reads the data that was written in the previous step and returns
a CoverageData object. The location of the coverage file is also determined via the system
property coverage.dir.

3.5 What needs to be logged?
In general every statement in a method or constructor should be logged. However, there are
some exceptions for statements that should not be logged and are not expected to be coverable,
e.g. else, case, catch, finally, super constructor call, and this constructor call.

In the package testing.debugging.project1.coverage.integration there are several tests that
describe how different statements are expected to be covered. Each class has some code that is

2

http://tinyurl.com/y7zjoj7


exercised by the main method, and two methods that return the data that is expected from the
coverage tool. The method getExpectedCoverage() returns an array that describes which lines
are expected to be covered, and the method getCoverableLines() returns an array with all lines
that are expected to be coverable.

The tests can be run via ant with the command: ant check-coverage. Note: Before the first
invocation mvn assembly:assembly has to be run once.

4 Reaching a coverage goal
Using the coverage tool, the percentage of covered statements for a class can be determined. To
this end, the tests in the package testing.debugging.project1.coveragegoal should be enhanced
such that 100 % code coverage is reached for the classes:
org.apache.commons.math.stat.descriptive.moment.Variance and
org.apache.commons.math.fraction.ProperFractionFormat from the COMMONS-MATH project
as they appear in revision 801855. The svn command to check out this version is:
svn checkout -r 801855

http://svn.apache.org/repos/asf/commons/proper/math/trunk commons-math

It is allowed to use existing tests from COMMONS-MATH to reach the coverage goal.

5 Fault Localization
Using the coverage data of passing and failing tests, allows to apply fault localization techni-
ques as described in the lecture on Comparing Coverage. Your task is to implement the Taran-
tula fault localization technique as defined in the paper Empirical Evaluation of the Tarantula
Automatic Fault-Localization Technique 1 , which uses the following formula to calculate the
suspiciousness for a line:

suspiciousness(e) =

failed(e)
totalfailed

passed(e)
totalpassed + failed(e)

totalfailed

The FaultLocalizerFactory should return a FaultLocalizer that implements the Tarantula
technique. An integration test for the fault localizer can be run with the command ant check-
fault-localization.

6 Hints
• In order to run a process on exit of the virtual machine, you can use the method addShut-

downHook() in class java.lang.Runtime

• You are allowed to use several third party libraries, e.g. commons-lang, commons-io,
google-collections. For details see the pom.xml. If you want to use a library not listed
there, write us a mail and explain why you want to use this library.

1The paper can be obtained from our web site. The user name and password is tad10

3



• There is a bug in the rewrite() method of class org.eclipse.jdt.core.dom.CompilationUnit
that either results in a java.lang.StringIndexOutOfBoundsException, or in wrong output
for the test case NoBracesElseIfCoverageTest. A workaround is to use the toString me-
thod of CompilationUnit instead.

Enjoy!

4


	Requirements
	Set up the project
	Code Coverage Tool
	Instrumenting files
	Running the instrumented files
	Tracing test names
	Reading the coverage data
	What needs to be logged?

	Reaching a coverage goal
	Fault Localization
	Hints

