
Structural Testing

• Path coverage criteria

• Logic coverage criteria

• Dataflow coverage criteria

• Mutation testing

Structural
“white box”

Functional Testing

• Boundary Value Testing

• Equivalence Class Testing

• Decision Table-Based Testing

• Combinatorial Testing

• Grammar-based Testing

• Model-based Testing

Functional
“black box”

IPO Strategy

• Builds a t-way test set in an incremental manner

• A t-way test set is first constructed for the first t parameters,

• Then, the test set is extended to generate a t-way test set for
the first t + 1 parameters

• The test set is repeatedly extended for each additional
parameter.

• Two steps involved in each extension for a new
parameter:

• Horizontal growth: extends each existing test by adding one
value of the new parameter

• Vertical growth: adds new tests, if necessary

Structural testing takes a look at
the internals of a program, and
aims to exercise the code as
thoroughly as possible. The main
systematic approaches to structural
testing use different coverage
criteria or mutants as test goals.

Functional testing considers the
system under test as a black box of
which only the inputs and outputs
are known - this is complementary
to structural testing. Functional
testing uses specifications to derive
test cases - a specification can
range from an interface definition,
informal specification, or even
formal specification.

Combinatorial testing is an
effective way to reduce the
number of test cases necessary
while still detecting the majority
of faults caused by interactions
between parameters. IPO (In
Parameter Order) is one of many
heuristics to generate a
covering array, which represents
a t-wise test suite.

1. Pairwise testing protects against pairwise bugs

2. while dramatically reducing the number of
tests to perform

3. which is especially cool because pairwise bugs
represent the majority of combinatoric bugs

4. and such bugs are a lot more likely to happen
than ones that only happen with more
variables

5. Plus, you no longer need to create these tests
by hand.

might find some

 compared to testing all combinations,
but not necessarily compared to testing just the
combinations that matter.

might
or might not, depending on the actual dependencies among
variables in the product.

some , or less likely to happen, because user inputs are
not uniformly distributed.

 except for the work of analyzing the product,
selecting variables and values, actually configuring and
performing the test, and analyzing the results.

Covering Grammars
• Terminal symbol coverage

Each terminal must be used generate at least one test case

• Production coverage
Each production must be used to generate at least one
(section of) test case

• Boundary condition
Annotate each recursive production with minimum and
maximum number of application, then generate:

• Minimum
• Minimum + 1
• Maximum - 1
• Maximum

Generating Tests

• Valid tests

• Generate tests as XML messages by deriving strings
from grammar

• Take every production at least once

• Take choices … “maxOccurs = “unbounded” means
use 0, 1 and more than 1

• Invalid tests

• Mutate the grammar in structured ways

• Create XML messages that are “almost” valid

Combinatorial testing reduces
the number of tests by only
requiring combinations of all
parameters up to a certain
number - 2-way (pairwise), 3-
way, etc. It is a very popular
technique that has been shown to
be effective at fault finding (e.g.,
90% of all faults have been
reported to be caused by
interaction of two parameters).
Despite such impressive data, one
should not blindly adopt a
technique but understand the
testing problem at hands.

Grammar-based testing is one of
the oldest types of automated
testing, originally conceived to test
compilers. A grammar can be used
to generate complex (textual) test
input. As a grammar potentially
defines an infinite number of
possible data, coverage criteria are
once again applied.

Invalid test data can be produced
by mutating a grammar. Mutation
can be applied before or during test
generation with the grammar.

