
Testing OO Software -
What’s different?

• Less complexity in procedures
Short methods

• Complexity is relocated
to the connections among components

• Less problems
based on intra-procedural and control flow

• More problems
related to interaction between classes

• Less static determinism
many faults can now only be detected at runtime

OO Mutation

AMC - Access Modifier Change

HVD - Hiding Variable Deletion
HVI - Hiding Variable Insertion
OMD - Overriding Method Deletion
OMM - Overridden Method Moving
OMR - Overridden Method Rename
SKR - Super Keyword Deletion
PCD - Parent Constructor Deletion

ATC - Actual Type Change

RTC - Reference Type ChangeInformation Hiding

Inheritance

Polymorphism

DTC - Declared Type Change

PTC - Parameter Type Change

OMC - Overloading Method Change

OMD - Overloading Method Deletion

AOC - Argument Order Change

ANC - Argument Number Change

TKD - this Keyword Deletion

SMV - Static Modifier Change

VID - Variable Initialization Deletion

Overloading

Java Specific

JDC - Java Supported Default Constructor

Actual Needs and
Constraints

Unit/
Component

Specs

System Test

Integration Test

Module Test

User Acceptance (alpha, beta test)

R
ev

ie
w

Analysis /
Review

Analysis /
Review

User review of external behavior as it is
determined or becomes visible

Unit/
Components

Subsystem
Design/Specs Subsystem

System
Integration

System
Specifications

Delivered
Package

Mutation testing defines a set of
operators that simulate typical defects in
OO systems. These mutation operators
generate far less mutants than classical
mutation operators, but also a higher
percentage of equivalent mutants. Test
cases to kill these mutants have to
exercise classes in ways to distinguish
them from ancestors or other
polymorphic types, for example.

Object-oriented software only affects the
module and integration test levels, the
remaining test levels are independent of
the type of software.

OO Testing Levels

• Intra-method testing : Testing individual methods
within classes

• Inter-method testing : Multiple methods within a class
are tested in concert

• Intra-class testing : Testing a single class, usually using
sequences of calls to methods within the class

• Inter-class testing : More than one class is tested at
the same time (integration)

o bound to
instance of Z

h def (o)

Client f

i o.m()

j o.l()

k o.n()

m ()

def (Z::x)

n ()

use (Z::x)
use (Z::x)

l ()

def (W::u)

Example Coupling Sequence

Coupling
sequence with
respect to Z::x

W
-v :
-u :

+m()
+n()
+l()

X
-x :
+n()

Y
-w :
+m()
+l()

Z

+m()
+n()

-x :

(c) 2008 Mauro Pezzè & Michal Young

Deriving an FSM and test cases

Not present Unbound Bound
1 20

isBound

isBound
bind

unBind

unBind

incorporate

• TC-1: incorporate, isBound, bind, isBound
• TC-2: incorporate, unBind, bind, unBind, isBound

Test cases for intra- and inter-method
testing are method calls, but for intra-
and inter-class testing a test case
consists of a sequence of method calls.
In addition, setup code to get objects
into the necessary states is required.

A coupling sequence is a
sequence of method calls in
which a variable shared by a
common instance context is
defined in one method and
used in another method.

A simple analysis of the
informal specification of class
Slots allows to identify states
and transitions. This state
machine allows to derive
sequences of method calls for
intra-class testing, for
example by choosing method
call sequences that cover all
states or transitions in the
FSM.

