
Constraint-based Testing

216 Structural Testing

!" #$%&!'()*&!+!(,#-.(./

#$%&!'.)*&!+!.(#-.(./

0,*!-1!+!2/

#$%&!#/

#!+!'()*&/

03!4#!++!5657!"!!

'.)*&!+!5!5/

8!

9$0:(!4'()*&7!"

;&<(

'.)*&!+!5=25/

&(*<&,!-1/

8

>%:?(

;&<(

0,*!.0@0*A$0@$!+!B(CAD%:<(?E'466()*&7F/

0,*!.0@0*A:-9!+!B(CAD%:<(?E'466()*&7F/

03!4.0@0*A$0@$!++!GH!II!.0@0*A:-9!++!GH7!"

;&<(

-1!+!H/

8

;&<(

(:?(!"

'.)*&!+!HJ!'!.0@0*A$0@$!6!.0@0*A:-9/

8

>%:?(

66.)*&/

66()*&/

8

>%:?(

>%:?(

!(:?(03!4#!++!5K57!"

(:?(

'.)*&!+!'()*&/

8

0,*!#@0A.(#-.(4#$%&!'(,#-.(.L!#$%&!'.(#-.(.7

!

"

#

$ %

& '

()

*

+

Figure 12.2: The control flow graph of function cgi decode from Figure 12.1

Draft version produced August 1, 2006

A

B

C

D E

GF

H I

L
M

Program Constraint
system

(a>b ∧ c
= 2) ∨ (a>5
∧ b>a) ∨

(a<b ∧ b<5

D

Test Goal Constraint
solver

Test data

a = 1
b = 2
c = 3

double P

double P(short x, short y) {
 short w = abs(y);
double z = 1.0;

A

while(w != 0) {
B

z = z * x
w = w - 1

C

if(y < 0)
D

z = 1.0 / z
E

return z; }
F

• A: w := abs(Y); z := 1.0;

• B: abs(Y) != 0

• C: z := X; w := abs(Y) - 1;

• B: abs(Y) - 1 != 0

• C: z := X * X; w := abs(Y) - 2;

• B: abs(Y) - 2 = 0

• D: Y >= 0

• F: return (X*X);

Simple forward symbolic execution

A-B-C-B-C-B-D-F with X, Y

double P

double P(short x, short y) {
 short w = abs(y);
double z = 1.0;

A

while(w != 0) {
B

z = z * x
w = w - 1

C

if(y < 0)
D

z = 1.0 / z
E

return z; }
F

<A, {<z,⊥>, <w,⊥>}, true>

<A-B-C-B,
 {z,X>, <w,abs(Y)-1},
 abs(Y) != 0
>

<A-B-C-B-C-B-D-F,
 {<z,X2>, <w,abs(Y)-2>},
 (abs(Y)!=0) ∧(abs(Y)!=1) ∧
 (abs(Y) =2) ∧(Y>=0)
>

Symbolic states:
<Path, State, Path Conditions>

In constraint-based testing, we
represent the program under test
and our test goal as a constraint
system. Any solution to this
constraint system is a valid test
input that will satisfy the test goal.
To derive a solution we can
leverage powerful constraint
solvers. There are two main
approaches to constraint based
testing: Path-based and goal based
testing.

In path based testing, we select a
path from the control flow graph
and then use symbolic execution to
derive constraints that represent
this path. Symbolic execution can
be done in a forward fashion,
where at each execution step the
symbolic state is updated
according to the encountered
expressions and conditions. The
feasible path problem can be
overcome by using dynamic
symbolic execution, where we only
follow paths that are reached by
real executions.

At the end of symbolic execution,
the last symbolic state contains the
set of constraints that need to be
true for this path to be taken. By
solving this constraint system, we
generate test data for the chosen
path. (In this case: (abs(Y)!=0) ∧
(abs(Y)!=1) ∧(abs(Y) =2) ∧(Y>=0)

double P

double P(short x, short y) {
 short w = abs(y);
double z = 1.0;

A

while(w != 0) {
B

z = z * x
w = w - 1

C

if(y < 0)
D

z = 1.0 / z
E

return z; }
F

• F,D: Y >= 0

• B: Y>=0, w=0

• C: Y>=0, w-1=0

• B:Y>=0,w-1=0,w!=0

• C: Y>=0,w-2=0,w-1!=0

• B: Y>=0,w-2=0,w-1!=0,w!=0

• A: Y>=0, abs(Y)-2=0,abs
(Y)-1=0,abs(Y)!=0

Backward Analysis

A-B-C-B-C-B-D-F with X, Y

double P

double P(short x, short y) {
 short w = abs(y);
double z = 1.0;

A

while(w != 0) {
B

z = z * x
w = w - 1

C

if(y < 0)
D

z = 1.0 / z
E

return z; }
F

double P

double P(short x, short y) {
 short w1 = abs(y);
double z1 = 1.0;

A

w3 = ϕ(w1,w2)
z3 = ϕ(z1,z2)
while(w3 != 0) {

B

z2 = z3 * x
w2 = w3 - 1

C

if(y < 0)
D

z4 = 1.0 / z3
E

z5 := ϕ(z4,z3)
return z5; }

F

double P(short x, short y) {
 short w1 = abs(y);
double z1 = 1.0;

A

if(w1 != 0) {
B

if(y < 0)
H

z6 = 1.0 / z5
I

z7 := ϕ(z5,z6)
return z7; }

J

if(w2 != 0) {
D

z3 = z2 * x
w3 = w2 - 1

E

z2 = z1 * x
w2 = w1 - 1

C

z4 := ϕ(z2,z3)
w4 := ϕ(w2,w3)

F

z5 := ϕ(z1,z4)
w5 := ϕ(w1,w4)

G

w1 = abs(y) ∧
z1 = 1.0 ∧
z2 = z1 * x ∧
w2 + w1 - 1 ∧
z3 = z2 * x ∧
w3 = w2 - 1 ∧
((w4 = w2 ∧ z4 = z2 ∧ w2 =0) ∨
 (w4 = w3 ∧ z4 = z3 ∧ w2 != 0)) ∧
((w1 =0 ∧ z5 = z1 ∧ w5 = w1) ∨
 (w1 != 0 ∧ z5 = z4 ∧ w5 = w4)) ∧
z6 = 1.0 / z5 ∧
((y >= 0 ∧ z7 = z5) ∨ (y < 0 ∧ z6))

w1 != 0 ∧ w2 != 0

The alternative to forward
execution is backward analysis,
where we again collect conditions,
but this time rewrite these
conditions according to the
expressions we encounter. This
means that the exact symbolic
state is not known along the path,
but therefore backward analysis is
computationally cheaper.

For goal oriented testing, we first
convert a program to Static Single
Assignment form.

Then, from the SSA form and after
unrolling loops, we can derive a
constraint system. To this constraint
system we can add a constraint
that describes the test goal (e.g.,
the conjunction of the control
dependencies) of the target branch.

