
Test Data Generation
Given a function and a location we want to 
reach, how do we derive inputs to the 
function that lead the control flow to the 
desired statement?

DeduceThink SearchGuess

Search-based Software 
Engineering

• Cast problems of software engineering as 
optimization problems

• Search problems in software engineering 
are

• Apply meta-heuristic search algorithms to 
solve these problems

BIG

Genetic 
Algorithms

Initialize
Population

Select parents

Recombine 
parents

Evaluate
Population

Return best 
solution

While not 
done

Encoding?
Population size?

Fitness function?
Stopping 
criterion?

Selection 
function?

Recombination 
operators?

Recombination 
frequency?

In the examples in previous 
lectures, we had to think hard to 
come up with input data that would 
kill mutants or achieve a coverage 
goal. For bigger programs, this 
becomes a tedious thing to do, so 
we would like to automate it. One 
approach to do so is to just throw 
random inputs at the program until 
we are lucky. Obviously, a better 
but more costly solution is to 
search or to analyze the program 
and deduce the necessary test 
inputs.

Search-based Software 
Engineering (SBSE) tries to solve 
software engineering problems by 
casting them as search problems. 
As the search space of a typical 
software engineering problem is 
huge (remember the roots 
example?) we canʼt search 
exhaustively with e.g. BFS or DFS - 
we need heuristics.

A genetic algorithm is an 
evolutionary algorithm that evolves 
a population of candidate solutions 
towards an optimal solution with 
respect to some fitness 
measurement. The algorithm 
imitates natural selection 
processes such as crossover and 
mutation.



public int gcd

public int gcd(int x, int y) {
int tmp;

A

while(y != 0) {
B

tmp = x % y;
C

x = y;
D

y = tmp;
E

return x; }
F

{}

A

A,B

A,B,C

A,B,C,D

A,B

B,F

F

D,E,B,F

E,B,F

B,F

{}

Dominators Post-
Dominators

public int gcd(int x, int y) {
int tmp;

A

while(y != 0) {
B

tmp = x % y;
C

x = y;
D

y = tmp;
E

return x; }
F

Control+Branch 
Distance

• Control distance results in plateaux

• Branch distance results in local optima

• Use combination!

• (dependent - executed) + branch_distance

Approach level Branch distance at node of diversion

A is control dependent on B if: B 
has at least two successors in the 
CFG, B dominates A, B is not post-
dominated by A, and there is a 
successor of B that is post-
dominated by A

Control-dependence can be 
represented in a tree: A connection 
between two nodes in the tree 
means the child node is control 
dependent on the parent node.

To cast test data generation as a 
search problem by looking at the 
approach level (how many control 
dependent edges in the CDG are 
missing?) and the branch distance 
(how close was the last critical 
branch to be taken in the right 
direction?)


