
Motivation & Introduction Differentiation techniques 1st approach Final approach Applications Conclusion References

Functional Differentiation of Computer
Programs

by Jerzy Karczmarczuk

Henning Zimmer

March 22, 2006



Motivation & Introduction Differentiation techniques 1st approach Final approach Applications Conclusion References

Outline

Motivation & Introduction

Differentiation techniques

1st approach

Final approach

Applications

Conclusion

References



Motivation & Introduction Differentiation techniques 1st approach Final approach Applications Conclusion References

Why do we want to compute derivatives ?

Derivatives are useful for ...

� solving Optimization Problems

� Image Processing (Feature Extraction, Object Recognition)

� 3-D-Modelling (geom. properties of curves and surfaces)

� Many fields of scientific computing like engineering, : : :

We show a

� purely functional implementation (using Haskell)

� only based on numerics (no symbolic computations)

� relying on overloading of arithmetic operators,
lazy evaluation and type classes concept

� yielding (point-wise) derivatives of ..

� .. any order, using ’co-recursive’data structures and

� .. any mathematical function definable in Haskell code



Motivation & Introduction Differentiation techniques 1st approach Final approach Applications Conclusion References

Why do we want to compute derivatives ?

Derivatives are useful for ...

� solving Optimization Problems

� Image Processing (Feature Extraction, Object Recognition)

� 3-D-Modelling (geom. properties of curves and surfaces)

� Many fields of scientific computing like engineering, : : :

We show a

� purely functional implementation (using Haskell)

� only based on numerics (no symbolic computations)

� relying on overloading of arithmetic operators,
lazy evaluation and type classes concept

� yielding (point-wise) derivatives of ..

� .. any order, using ’co-recursive’data structures and

� .. any mathematical function definable in Haskell code



Motivation & Introduction Differentiation techniques 1st approach Final approach Applications Conclusion References

Outline

Motivation & Introduction

Differentiation techniques

1st approach

Final approach

Applications

Conclusion

References



Motivation & Introduction Differentiation techniques 1st approach Final approach Applications Conclusion References

3 ways ... (I)

We have 3 ways to compute derivatives:

1. Finite differences approximation:

f 0(x) � f (x +�x)� f (x)
�x

� Inaccurate if �x is too big,
� Cancellation errors if �x is too small.

2. Symbolic differentiation: ’manual’, formal method

� Exact, but quite costly

� Control structures like loops, etc. have to be ’unfolded’ symbolic
interpretation of whole program
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3 ways ... (II)

3. Computational Differentiation - CD: Our approach !

� Numeric algorithms, based on standard arithmetic operations, with
known differential properties (school knowledge!)

� As exact as numerical evaluation of symbolic derivatives (but lacks
symbolical (analytical) results)
based on overloading (already implemented in C++)

� Functional implementation relies on co-recursive data structures

R � = C � j T � (R �)

for computing derivatives of any order!

� Drawback : discontinuous or non-differentiable functions (e.g.
abs x ) also yield values for their derivatives, which is
unsatisfactory
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First approach: ’We are not lazy!’

We start with a simple approach

� only compute first derivatives

� without lazy evaluation

� yielding a quite efficient solution

� introduce ’extended numerical’ structure:

type Dx = (Double, Double)

� grouping numerical value (main value) e of an expression with
value of first derivative e0 at the same point : (e;e0)

� (c, 0.0) for constants c and (x, 1.0) for variables x .

� Could replace double by any ring (R;+;�) or field (F ;+;�; =)
� Remark: No symbolic calculations constants and variables

don’t need to have explicit names !
e.g.: (3.141, 0.0) or (2.523, 1.0)
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Overloaded Arithmetic

� Define overloaded arithmetic operators for type Dx

� implementing basic derivation laws
sum-, product-, quotient-rule, ...

(x,a)+(y,b) = (x+y, a+b) (:: Dx -> Dx -> Dx)
(x,a)-(y,b) = (x-y, a-b)
(x,a)*(y,b) = (x*y, x*b+a*y)
negate (x,a) = (negate x, negate a)
(x,a)/(y,b) = (x/y, (a*y-x*b/(y*y))
recip (x,a) = (w,(negate a)*w*w) where w=recip x

� Also auxiliary functions to construct constants and variables and
a conversion function

dCst z = (z, 0.0) dVar z = (z, 1.0)
fromDouble z = dCst z



Motivation & Introduction Differentiation techniques 1st approach Final approach Applications Conclusion References

Overloaded Arithmetic

� Define overloaded arithmetic operators for type Dx

� implementing basic derivation laws
sum-, product-, quotient-rule, ...

(x,a)+(y,b) = (x+y, a+b) (:: Dx -> Dx -> Dx)
(x,a)-(y,b) = (x-y, a-b)
(x,a)*(y,b) = (x*y, x*b+a*y)
negate (x,a) = (negate x, negate a)
(x,a)/(y,b) = (x/y, (a*y-x*b/(y*y))
recip (x,a) = (w,(negate a)*w*w) where w=recip x

� Also auxiliary functions to construct constants and variables and
a conversion function

dCst z = (z, 0.0) dVar z = (z, 1.0)
fromDouble z = dCst z



Motivation & Introduction Differentiation techniques 1st approach Final approach Applications Conclusion References

Overloaded Arithmetic

� Define overloaded arithmetic operators for type Dx

� implementing basic derivation laws
sum-, product-, quotient-rule, ...

(x,a)+(y,b) = (x+y, a+b) (:: Dx -> Dx -> Dx)
(x,a)-(y,b) = (x-y, a-b)
(x,a)*(y,b) = (x*y, x*b+a*y)
negate (x,a) = (negate x, negate a)
(x,a)/(y,b) = (x/y, (a*y-x*b/(y*y))
recip (x,a) = (w,(negate a)*w*w) where w=recip x

� Also auxiliary functions to construct constants and variables and
a conversion function

dCst z = (z, 0.0) dVar z = (z, 1.0)
fromDouble z = dCst z



Motivation & Introduction Differentiation techniques 1st approach Final approach Applications Conclusion References

Haven’t we forgot something?

� Chain rule: d(f (g(x))) = f 0(g(x)) � d(g(x))
� Important for derivatives of elementary functions like

sin; cos; log; : : :
� These functions f are lifted to the Dx domain, given their

derivative form f’

dlift f f’ (x,a) = (f x , a * f’ x)
exp = dlift exp exp
sin = dlift sin cos

� .. same for cos;px ; log

� Now we can define arbitrary complicated mathematical functions
like f x = x*x * cos(x)

� .. and f 6.5  (41.260827, 3.606820) � (f (6:5); f 0(6:5))
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Haskell type classes

� Approach doesn’t use Haskell’s type classes 1

� Introduce modified algebraic style library (� mathematical
hierarchy) of type classes:

� AddGroup for addition and subtraction

� Monoid for multiplication, Group for division

� Ring for structures supporting addition and multiplication,
Field adding division

� Module abstracts multiplication of complex object by element of
basic domain (e.g.: � � ~v )

� Number uses fromInt, fromDouble to convert standard
numbers in our Dx domain

1generic operations: declared within classes, datatypes accepting them are
instances of them
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Differential Algebra and ’Lazy towers of derivatives’

� Compute (as promised) ’all’ derivatives of functions (exact: an a
priori unknown number)

� Data structure, representing expression of infinite domain:
num. value e0 and all derivatives [e0;e1;e2; : : :] (ei � e(i))
without explicit truncation, created by co-recursion!

� Need background in Differential Algebra

� Field (F ;+;�; =) with derivation a 7! a0
� F = R is trivial: 8x 2 R : x 7! 0

� Extend field to F (x) by adjoining symbolic x

� If mathematical structure of the expressions known, we can
discard the x  no symbolic computations

� E.g.: Represent polynomial by list of its coefficients
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Get it started

� Important: We assume that x and x 0 are algebraic independent
and thus assign to expressions e all derivatives e0;e00; : : : by the
derivation operator en 7! en+1

� We use no indeterminate and just operate on infinite, lazy lists of
a priori independent elements

� We define the co-recursive, infinite, parameterized type

data Dif a = C a | D a (Dif a)

� C a codes a constant a whose derivative is 0

� D e (D a (D b ...)) codes the numerical value of the
expression (e) and the remainder the tower of derivatives
(a = e0;b = e00; : : :)

� In general, a should be an instance of a field, e.g. Double
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Overloaded Arithmetics for Dif domain

� The derivation operator df :: a -> a is declared in
class Diff a

� Lifting procedures: df (C ) = C 0.0 ; df (D p) = p

� We implement the basic derivation laws

� The sum-rule is trivial, with Dif a instance of AddGroup class:

C x + C y = C (x+y)
C x + D y y’ = D (x+y) y’

D x x’ + D y y’ = D (x+y) (x’+y’)
neg = fmap neg

� Same for product-rule and unaltered constants (Monoid class):

C x * C y = C (x*y)
C x * p = x*>p

p@(D x x’)*q@(D y y’) = D (x*y)(x’*q+p*y’) 2

2x*>s = fmap (x*) s
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Overloaded Arithmetics (II)

� Reciprocal ( 1
u(x) )0 = �u0(x)

u(x)2 heavily uses lazy evaluation
(Group class):

recip (C x) = C (recip x)
recip (D x x’) = ip where

ip = D (recip x) (neg x’*ip*ip)

� further trivial cases left out !

� Division might present some problems: 0
0

p@(D x x’) / q@(D y y’)

| x==0.0 && y==0.0 = x’/y’ --L’ Hopital--

| otherwise = D (x/y) (x’*q - p*y’/(q*q))
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Lifting and the chain rule

� Transcendental functions f like exp; sin; : : : need lifting to the
Dif domain

� Definition of their list of formal derivatives fq , using lazy
evaluation (Group class)

� E.g.: (exp(u(x)))0 = u0(x) � exp(u(x))

dlift (f:fq) p@(D x x’) =
D (f x) (x’ * dlift fq p) {--Chain rule--}

exp (D x x’) = r where r = D (exp x) (x’*r)

sin =
dlift (cycle[sin,cos,(neg . sin),(neg . cos)])

� cos; log;px in the same manner!

� and that’s it ... we’re done !!!
� Now: df (df (df (f 6.5)))  -30.288818 � f 000(6:5)
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Example applications

� Wide spread, huge application domain, ’ranging from reactor
diagnostic, meteorology, oceanography, up to biostatistics’ and
quantum theory

� One example : Elegant coding of differential recurrences, like the
Hermite function, without explicit truncation of recurrent
computation !

H0(x) = exp(�x2

2
)

Hn(x) = 1p
2n

(x � Hn�1(x)� d
dx

(Hn�1(x)))

herm n x = cc where
D cc _ = hr n (dVar x)
hr 0 x = exp(neg x * x / fromDouble 2.0)
hr n x = (x*z - df z)/(sqrt(fromInteger (2*n)))

where z=hr (n-1) x
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Final Remarks - Pro’s and Con’s

� clear, readable, compact (especially for towers!) and
semantically powerful nice coding tool!

� Thunks of lazy evaluation may introduce space leaks, when
computing derivatives of high order
Remedy: use truncated strict variant, like 1st approach, given
number of derivatives to compute

� not extremely efficient, hence outperformed by C++
implementations and semi-automatic systems

� Still useable and faster than symbolic systems

� Claim: straight forward generalization to vector or tensor objects

� Control structures (if-then-else) need arithm. relations on
(infinite) Dif type
Simplified remedy: just compare main values
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Summary

� We’ve seen: Rewarding application of modern functional
programming paradigms to scientific computing (usually domain
of low-level languages)

Contribution

� Type inference, Overloading ) overloaded arithmetic operators,
declare differentiation variables

� Lazy evaluation ) derivation operator, applicable arbitrary (a
priori unknown) number of times, without explicit truncation!

� Type classes, Lifting ) extended arithmetics, valid for any basic
domain, e.g.: C;P



Motivation & Introduction Differentiation techniques 1st approach Final approach Applications Conclusion References

Summary

� We’ve seen: Rewarding application of modern functional
programming paradigms to scientific computing (usually domain
of low-level languages)

Contribution
� Type inference, Overloading ) overloaded arithmetic operators,

declare differentiation variables

� Lazy evaluation ) derivation operator, applicable arbitrary (a
priori unknown) number of times, without explicit truncation!

� Type classes, Lifting ) extended arithmetics, valid for any basic
domain, e.g.: C;P



Motivation & Introduction Differentiation techniques 1st approach Final approach Applications Conclusion References

Outline

Motivation & Introduction

Differentiation techniques

1st approach

Final approach

Applications

Conclusion

References



Motivation & Introduction Differentiation techniques 1st approach Final approach Applications Conclusion References

References

� Karczmarczuk, Jerzy, Functional Differentiation of Computer
Programs,
Journal of HOSC (14), (2001), pp. 35-57

� Karczmarczuk, Jerzy, Generating power of lazy semantics,
Journal of Theoretical Computer Science (vol. 187), (1997), pp.
203-219


	Motivation & Introduction
	Differentiation techniques
	1st approach
	Final approach
	Applications
	Conclusion
	References

