Functional Differentiation of Computer Programs by Jerzy Karczmarczuk

Henning Zimmer

March 22, 2006

Outline

Motivation \& Introduction

Differentiation techniques

1st approach

Final approach

Applications
Conclusion

References

Why do we want to compute derivatives ?

Derivatives are useful for ...

- solving Optimization Problems
- Image Processing (Feature Extraction, Object Recognition)
- 3-D-Modelling (geom. properties of curves and surfaces)
- Many fields of scientific computing like engineering, ...

Why do we want to compute derivatives ?

Derivatives are useful for ...

- solving Optimization Problems
- Image Processing (Feature Extraction, Object Recognition)
- 3-D-Modelling (geom. properties of curves and surfaces)
- Many fields of scientific computing like engineering, ...

We show a

- purely functional implementation (using Haskell)
- only based on numerics (no symbolic computations)
- relying on overloading of arithmetic operators, lazy evaluation and type classes concept
- yielding (point-wise) derivatives of ..
- .. any order, using 'co-recursive'data structures and
- .. any mathematical function definable in Haskell code

Outline

Motivation \& Introduction

Differentiation techniques

1st approach

Final approach

Applications
Conclusion

References

3 ways ... (I)

We have 3 ways to compute derivatives:

1. Finite differences approximation:

$$
f^{\prime}(x) \approx \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

- Inaccurate if Δx is too big,
- Cancellation errors if Δx is too small.

3 ways ... (I)

We have 3 ways to compute derivatives:

1. Finite differences approximation:

$$
f^{\prime}(x) \approx \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

- Inaccurate if Δx is too big,
- Cancellation errors if Δx is too small.

2. Symbolic differentiation: 'manual', formal method

- Exact, but quite costly
- Control structures like loops, etc. have to be 'unfolded' \rightsquigarrow symbolic interpretation of whole program

3 ways ... (II)

3. Computational Differentiation - CD: Our approach !

- Numeric algorithms, based on standard arithmetic operations, with known differential properties (school knowledge!)
- As exact as numerical evaluation of symbolic derivatives (but lacks symbolical (analytical) results) based on overloading (already implemented in C++)
- Functional implementation relies on co-recursive data structures

$$
R \alpha=C \alpha \mid T \alpha(R \alpha)
$$

for computing derivatives of any order!

- Drawback: discontinuous or non-differentiable functions (e.g. abs x) also yield values for their derivatives, which is unsatisfactory

Outline

Motivation \& Introduction

Differentiation techniques

1st approach

Final approach

Applications

Conclusion

References

First approach: 'We are not lazy!'

We start with a simple approach

- only compute first derivatives
- without lazy evaluation
- yielding a quite efficient solution
- introduce 'extended numerical' structure:

$$
\text { type Dx }=\text { (Double, Double) }
$$

First approach: 'We are not lazy!'

We start with a simple approach

- only compute first derivatives
- without lazy evaluation
- yielding a quite efficient solution
- introduce 'extended numerical' structure:
type Dx = (Double, Double)
- grouping numerical value (main value) e of an expression with value of first derivative e^{\prime} at the same point: (e, e^{\prime})
- ($c, 0.0$) for constants c and ($\mathrm{x}, 1.0$) for variables x.
- Could replace double by any ring $(R,+, \times)$ or field ($F,+, \times, /$)
- Remark: No symbolic calculations \rightsquigarrow constants and variables don't need to have explicit names !
e.g.: (3.141, 0.0) or (2.523, 1.0)

Overloaded Arithmetic

- Define overloaded arithmetic operators for type Dx
- implementing basic derivation laws sum-, product-, quotient-rule, ...

Overloaded Arithmetic

- Define overloaded arithmetic operators for type Dx
- implementing basic derivation laws sum-, product-, quotient-rule, ...

$$
\begin{aligned}
(x, a)+(y, b) & =(x+y, a+b) \quad(:: D x \rightarrow D x \rightarrow D x) \\
(x, a)-(y, b) & =(x-y, a-b) \\
(x, a) *(y, b) & =\left(x^{\star} y, x^{\star} b+a^{*} y\right) \\
\text { negate }(x, a) & =\text { (negate } x, \text { negate } a) \\
(x, a) /(y, b) & =\left(x / y,\left(a * y-x^{\star} b /\left(y^{*} y\right)\right)\right. \\
\text { recip }(x, a) & =\left(w,(\text { negate } a)^{\star} w^{\star} w\right) \text { where w=recip } x
\end{aligned}
$$

Overloaded Arithmetic

- Define overloaded arithmetic operators for type Dx
- implementing basic derivation laws sum-, product-, quotient-rule, ...

```
(x,a) +(y,b) = (x+y, a+b) (:: Dx -> Dx -> Dx)
(x,a)-(y,b)=(x-y, a-b)
(x,a)* (y,b) = (x*y, x*b+a*y)
negate (x,a) = (negate }x,\mathrm{ negate a)
(x,a)/(y,b) = (x/y, (a*y-x*b/(y*y))
recip (x,a) = (w, (negate a)*w*w) where w=recip x
```

- Also auxiliary functions to construct constants and variables and a conversion function

```
dCst z = (z, 0.0) dVar z = (z, 1.0)
fromDouble z = dCst z
```


Haven't we forgot something?

Haven't we forgot something?

- Chain rule: $d(f(g(x)))=f^{\prime}(g(x)) \cdot d(g(x))$
- Important for derivatives of elementary functions like sin, cos, log,...
- These functions f are lifted to the Dx domain, given their derivative form f^{\prime}

```
dlift f f' (x,a) = (f x , a * f' x)
exp = dlift exp exp
sin = dlift sin cos
```

- .. same for \cos , \sqrt{x}, \log
- Now we can define arbitrary complicated mathematical functions like $\mathrm{f} x=\mathrm{x}^{*} \mathrm{x}$ * $\cos (\mathrm{x})$
- .. and f 6.5 $\rightsquigarrow(41.260827,3.606820) \equiv\left(f(6.5), f^{\prime}(6.5)\right)$

Haskell type classes

- Approach doesn't use Haskell's type classes ${ }^{1}$
- Introduce modified algebraic style library (\equiv mathematical hierarchy) of type classes:
${ }^{1}$ generic operations: declared within classes, datatypes accepting them are instances of them

Haskell type classes

- Approach doesn't use Haskell's type classes ${ }^{1}$
- Introduce modified algebraic style library (\equiv mathematical hierarchy) of type classes:
- AddGroup for addition and subtraction
- Monoid for multiplication, Group for division
- Ring for structures supporting addition and multiplication, Field adding division
- Module abstracts multiplication of complex object by element of basic domain (e.g.: $\lambda \cdot \vec{v}$)
- Number uses fromInt, fromDouble to convert standard numbers in our Dx domain

[^0]
Outline

Motivation \& Introduction

Differentiation techniques

1st approach

Final approach

Applications
Conclusion

References

Differential Algebra and 'Lazy towers of derivatives'

- Compute (as promised) 'all' derivatives of functions (exact: an a priori unknown number)
- Data structure, representing expression of infinite domain: num. value e_{0} and all derivatives $\left[e_{0}, e_{1}, e_{2}, \ldots\right]\left(e_{i} \equiv e^{(i)}\right)$ without explicit truncation, created by co-recursion!

Differential Algebra and 'Lazy towers of derivatives'

- Compute (as promised) 'all' derivatives of functions (exact: an a priori unknown number)
- Data structure, representing expression of infinite domain: num. value e_{0} and all derivatives $\left[e_{0}, e_{1}, e_{2}, \ldots\right]\left(e_{i} \equiv e^{(i)}\right)$ without explicit truncation, created by co-recursion!
- Need background in Differential Algebra
- Field ($F,+, \times, /$) with derivation $a \mapsto a^{\prime}$
- $F=\mathbb{R}$ is trivial: $\forall x \in \mathbb{R}: x \mapsto 0$
- Extend field to $F(x)$ by adjoining symbolic x
- If mathematical structure of the expressions known, we can discard the $x \rightsquigarrow$ no symbolic computations
- E.g.: Represent polynomial by list of its coefficients

Get it started

- Important: We assume that x and x^{\prime} are algebraic independent and thus assign to expressions e all derivatives $e^{\prime}, e^{\prime \prime}, \ldots$ by the derivation operator $e_{n} \mapsto e_{n+1}$
- We use no indeterminate and just operate on infinite, lazy lists of a priori independent elements
- We define the co-recursive, infinite, parameterized type

$$
\text { data Dif } a=C \text { a | D a (Dif a) }
$$

Get it started

- Important: We assume that x and x^{\prime} are algebraic independent and thus assign to expressions e all derivatives $e^{\prime}, e^{\prime \prime}, \ldots$ by the derivation operator $e_{n} \mapsto e_{n+1}$
- We use no indeterminate and just operate on infinite, lazy lists of a priori independent elements
- We define the co-recursive, infinite, parameterized type

$$
\text { data Dif } a=C \text { a } \mid D \text { a (Dif a) }
$$

- C a codes a constant a whose derivative is 0
- D e (D a (D b ...)) codes the numerical value of the expression (e) and the remainder the tower of derivatives ($a=e^{\prime}, b=e^{\prime \prime}, \ldots$)
- In general, a should be an instance of a field, e.g. Double

Overloaded Arithmetics for Dif domain

- The derivation operator $\mathrm{df}:$: a -> a is declared in class Diff a
- Lifting procedures: df (C) = C 0.0 ; df (D - p) $=p$
- We implement the basic derivation laws
- The sum-rule is trivial, with Dif a instance of AddGroup class:

C $x+C y=C(x+y)$
$C x+D y y^{\prime}=D(x+y) y^{\prime}$
D $x x^{\prime}+D y y^{\prime}=D(x+y)\left(x^{\prime}+y^{\prime}\right)$
neg = fmap neg

[^1]
Overloaded Arithmetics for Dif domain

- The derivation operator $\mathrm{df}:$: a -> a is declared in class Diff a
- Lifting procedures: df (C) = C 0.0 ; df (D - p) $=p$
- We implement the basic derivation laws
- The sum-rule is trivial, with Dif a instance of AddGroup class:

C $x+C y=C(x+y)$
$C x+D y y^{\prime}=D(x+y) y^{\prime}$
$D \quad x x^{\prime}+D y y^{\prime}=D(x+y)\left(x^{\prime}+y^{\prime}\right)$
neg = fmap neg

- Same for product-rule and unaltered constants (Monoid class):

C x * C y = C (x*y)
C x * $p=x^{*}>p$
$\mathrm{p@}\left(\mathrm{D} x \mathrm{x}^{\prime}\right){ }^{*} \mathrm{q@}\left(\mathrm{D} y \mathrm{y}^{\prime}\right)=\mathrm{D}\left(\mathrm{x}^{*} \mathrm{y}\right)\left(\mathrm{x}^{\prime} * \mathrm{q}+\mathrm{p} \mathrm{H}^{\prime} \mathrm{y}^{\prime}\right)^{2}$

[^2]
Overloaded Arithmetics (II)

- Reciprocal $\left(\frac{1}{u(x)}\right)^{\prime}=\frac{-u^{\prime}(x)}{u(x)^{2}}$ heavily uses lazy evaluation (Group class):

```
recip (C x) = C (recip x)
recip (D x x') = ip where
    ip = D (recip x) (neg x'*ip*ip)
```

- further trivial cases left out !

Overloaded Arithmetics (II)

- Reciprocal $\left(\frac{1}{u(x)}\right)^{\prime}=\frac{-u^{\prime}(x)}{u(x)^{2}}$ heavily uses lazy evaluation (Group class):

```
recip (C x) = C (recip x)
recip (D x x') = ip where
    ip = D (recip x) (neg x'*ip*ip)
```

- further trivial cases left out !
- Division might present some problems: $\frac{0}{0}$

```
p@(D x x') / q@(D y y')
    | x==0.0 && y==0.0 = x'/y' --L' Hopital--
    | otherwise = D (x/y) (x'*q - p* ''/(q*q))
```


Lifting and the chain rule

- Transcendental functions $£$ like \exp , \sin , \ldots need lifting to the Dif domain
- Definition of their list of formal derivatives $£ q$, using lazy evaluation (Group class)
- E.g.: $(\exp (u(x)))^{\prime}=u^{\prime}(x) \cdot \exp (u(x))$
dlift (f:fq) p@(D x x') =
D (f x) (x^{\prime} * dlift fq p) \{--Chain rule--\}
$\exp \left(D \mathrm{x} \mathrm{x}^{\prime}\right)=r$ where $r=D(\exp x)\left(\mathrm{x}^{\prime *} r\right)$
$\sin =$
dlift (cycle[sin, cos, (neg . sin), (neg . cos)])
- cos, \log , \sqrt{x} in the same manner!

Lifting and the chain rule

- Transcendental functions f like \exp , \sin , \ldots need lifting to the Dif domain
- Definition of their list of formal derivatives $£ q$, using lazy evaluation (Group class)
- E.g.: $(\exp (u(x)))^{\prime}=u^{\prime}(x) \cdot \exp (u(x))$
dlift (f:fq) p@(D x x') =
D (f x) (x^{\prime} * dlift fq p) \{--Chain rule--\}
$\exp \left(D x x^{\prime}\right)=r$ where $r=D(\exp x)\left(x^{\prime}{ }^{*} r\right)$
sin $=$
\quad dlift (cycle[sin,cos, (neg . sin), (neg . cos)])
- cos, \log , \sqrt{x} in the same manner!
- and that's it ... we're done !!!
- Now: df (df (df (f 6.5))) $\rightsquigarrow-30.288818 \equiv f^{\prime \prime \prime}(6.5)$

Outline

Motivation \& Introduction

Differentiation techniques

1st approach

Final approach

Applications

Conclusion

References

Example applications

- Wide spread, huge application domain, 'ranging from reactor diagnostic, meteorology, oceanography, up to biostatistics' and quantum theory

Example applications

- Wide spread, huge application domain, 'ranging from reactor diagnostic, meteorology, oceanography, up to biostatistics' and quantum theory
- One example: Elegant coding of differential recurrences, like the Hermite function, without explicit truncation of recurrent computation!

$$
\begin{aligned}
& H_{0}(x)=\exp \left(\frac{-x^{2}}{2}\right) \\
& H_{n}(x)=\frac{1}{\sqrt{2 n}}\left(x \cdot H_{n-1}(x)-\frac{d}{d x}\left(H_{n-1}(x)\right)\right)
\end{aligned}
$$

herm $\mathrm{n} \mathrm{x}=\mathrm{cc}$ where
D Cc _ $=\mathrm{hr} \mathrm{n}$ (dVar x)
hr 0 x $=\exp (n e g x$ * $x /$ fromDouble 2.0)
hr $\mathrm{n} x=\left(\mathrm{x}^{*} \mathrm{z}-\mathrm{df} \mathrm{z}\right) /(\operatorname{sqrt}(f r o m I n t e g e r(2 * \mathrm{n}))$)
where $\mathrm{z}=\mathrm{hr}(\mathrm{n}-1) \mathrm{x}$

Outline

Motivation \& Introduction

Differentiation techniques

1st approach

Final approach

Applications
Conclusion

References

Final Remarks - Pro's and Con's

- clear, readable, compact (especially for towers!) and semantically powerful \rightsquigarrow nice coding tool!
- Thunks of lazy evaluation may introduce space leaks, when computing derivatives of high order Remedy: use truncated strict variant, like 1st approach, given number of derivatives to compute
- not extremely efficient, hence outperformed by C++ implementations and semi-automatic systems
- Still useable and faster than symbolic systems

Final Remarks - Pro’s and Con's

- clear, readable, compact (especially for towers!) and semantically powerful \rightsquigarrow nice coding tool!
- Thunks of lazy evaluation may introduce space leaks, when computing derivatives of high order Remedy: use truncated strict variant, like 1st approach, given number of derivatives to compute
- not extremely efficient, hence outperformed by C++ implementations and semi-automatic systems
- Still useable and faster than symbolic systems
- Claim: straight forward generalization to vector or tensor objects
- Control structures (if-then-else) need arithm. relations on (infinite) Dif type
Simplified remedy: just compare main values

Summary

- We've seen: Rewarding application of modern functional programming paradigms to scientific computing (usually domain of low-level languages)

Contribution

Summary

- We've seen: Rewarding application of modern functional programming paradigms to scientific computing (usually domain of low-level languages)

Contribution

- Type inference, Overloading \Rightarrow overloaded arithmetic operators, declare differentiation variables
- Lazy evaluation \Rightarrow derivation operator, applicable arbitrary (a priori unknown) number of times, without explicit truncation!
- Type classes, Lifting \Rightarrow extended arithmetics, valid for any basic domain, e.g.: \mathbb{C}, \mathbb{P}

Outline

Motivation \& Introduction

Differentiation techniques

1st approach

Final approach

Applications

Conclusion

References

References

- Karczmarczuk, Jerzy, Functional Differentiation of Computer Programs, Journal of HOSC (14), (2001), pp. 35-57
- Karczmarczuk, Jerzy, Generating power of lazy semantics, Journal of Theoretical Computer Science (vol. 187), (1997), pp. 203-219

[^0]: ${ }^{1}$ generic operations: declared within classes, datatypes accepting them are instances of them

[^1]: ${ }^{2} \mathbf{x *}>\boldsymbol{s}=\operatorname{fmap}\left(x^{*}\right) s$

[^2]: ${ }^{2} \mathbf{x *}>\mathbf{s}=\operatorname{fmap}\left(x^{*}\right) \mathbf{s}$

