1st approach

Final appro

Applicatio

s Conclusio

▲□▶▲□▶▲□▶▲□▶ □ のQ@

References

Functional Differentiation of Computer Programs by Jerzy Karczmarczuk

Henning Zimmer

March 22, 2006

Final appro

Applicatio

ons Cond

・ロン ・四 と ・ ヨン ・ ヨン

References

Motivation & Introduction

Differentiation techniques

1st approach

Final approach

Applications

Conclusion

References

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Why do we want to compute derivatives?

Derivatives are useful for

- solving Optimization Problems
- Image Processing (Feature Extraction, Object Recognition)
- 3-D-Modelling (geom. properties of curves and surfaces)
- Many fields of scientific computing like engineering,

Why do we want to compute derivatives ?

Derivatives are useful for ...

- solving Optimization Problems
- Image Processing (Feature Extraction, Object Recognition)
- 3-D-Modelling (geom. properties of curves and surfaces)
- Many fields of scientific computing like engineering,

We show a

- purely functional implementation (using Haskell)
- only based on numerics (no symbolic computations)
- relying on overloading of arithmetic operators, lazy evaluation and type classes concept
- yielding (point-wise) derivatives of ..
- .. any order, using 'co-recursive'data structures and
- .. any mathematical function definable in Haskell code

Final appro

Applicatio

Conclusio

References

Motivation & Introduction

Differentiation techniques

1st approach

Final approach

Applications

Conclusion

References

Reference

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

3 ways ... (I)

We have 3 ways to compute derivatives:

1. Finite differences approximation:

$$f'(\mathbf{x}) pprox rac{f(\mathbf{x} + \Delta \mathbf{x}) - f(\mathbf{x})}{\Delta \mathbf{x}}$$

- Inaccurate if Δx is too big,
- Cancellation errors if Δx is too small.

References

3 ways ... (I)

We have 3 ways to compute derivatives:

1. Finite differences approximation:

$$f'(x) \approx rac{f(x + \Delta x) - f(x)}{\Delta x}$$

- Inaccurate if Δx is too big,
- Cancellation errors if Δx is too small.
- 2. Symbolic differentiation: 'manual', formal method
 - Exact, but *quite costly*
 - Control structures like loops, etc. have to be 'unfolded' → symbolic interpretation of whole program

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

3 ways ... (II)

- 3. Computational Differentiation CD: Our approach !
 - Numeric algorithms, based on standard arithmetic operations, with known differential properties (school knowledge!)
 - As exact as numerical evaluation of symbolic derivatives (but lacks symbolical (analytical) results)
 based on overloading (already implemented in C++)
 - Functional implementation relies on co-recursive data structures

 $\boldsymbol{R} \alpha = \boldsymbol{C} \alpha \mid \boldsymbol{T} \alpha \ (\boldsymbol{R} \alpha)$

for computing derivatives of any order!

• **Drawback**: discontinuous or non-differentiable functions (e.g. abs x) also yield values for their derivatives, which is unsatisfactory

Final appro

Applicat

ions Cor

・ロン ・四 と ・ ヨン ・ ヨン

References

Motivation & Introduction

Differentiation techniques

1st approach

Final approach

Applications

Conclusion

References

First approach: 'We are not lazy!'

We start with a simple approach

- only compute first derivatives
- without lazy evaluation
- yielding a guite efficient solution
- introduce 'extended numerical' structure:

type Dx = (Double, Double)

First approach: 'We are not lazy!'

We start with a simple approach

- only compute first derivatives
- without lazy evaluation
- yielding a quite efficient solution
- introduce 'extended numerical' structure:

type Dx = (Double, Double)

- grouping numerical value (main value) *e* of an expression with value of first derivative *e'* at the same point: (*e*, *e'*)
- (c, 0.0) for constants c and (x, 1.0) for variables x.
- Could replace double by any ring $(R, +, \times)$ or field $(F, +, \times, /)$
- Remark: No symbolic calculations ~> constants and variables don't need to have explicit names !

e.g.: (3.141, 0.0) or (2.523, 1.0)

Conclusion

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

References

Overloaded Arithmetic

- Define overloaded arithmetic operators for type $\ensuremath{\mathtt{Dx}}$
- implementing basic derivation laws sum-, product-, quotient-rule, ...

Motivation & Introduction

nclusion R

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

References

Overloaded Arithmetic

- Define overloaded arithmetic operators for type $\ensuremath{\mathtt{Dx}}$
- implementing basic derivation laws sum-, product-, quotient-rule, ...

```
(x,a)+(y,b) = (x+y, a+b) (:: Dx -> Dx -> Dx)
(x,a)-(y,b) = (x-y, a-b)
(x,a)*(y,b) = (x*y, x*b+a*y)
negate (x,a) = (negate x, negate a)
(x,a)/(y,b) = (x/y, (a*y-x*b/(y*y))
recip (x,a) = (w,(negate a)*w*w) where w=recip x
```

Motivation & Introduction

Reference

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Overloaded Arithmetic

- Define overloaded arithmetic operators for type $\ensuremath{\mathtt{Dx}}$
- implementing basic derivation laws sum-, product-, quotient-rule, ...

```
(x,a)+(y,b) = (x+y, a+b) (:: Dx -> Dx -> Dx)
(x,a)-(y,b) = (x-y, a-b)
(x,a)*(y,b) = (x*y, x*b+a*y)
negate (x,a) = (negate x, negate a)
(x,a)/(y,b) = (x/y, (a*y-x*b/(y*y))
recip (x,a) = (w,(negate a)*w*w) where w=recip x
```

 Also auxiliary functions to construct constants and variables and a conversion function

dCst z = (z, 0.0) dVar z = (z, 1.0)fromDouble z = dCst z

Final app

Applicatio

Conclusion

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

References

Haven't we forgot something?

Haven't we forgot something?

- Chain rule: $d(f(g(x))) = f'(g(x)) \cdot d(g(x))$
- Important for derivatives of elementary functions like sin, cos, log, . . .
- These functions ${\tt f}$ are lifted to the ${\tt Dx}$ domain, given their derivative form ${\tt f}$ '

dlift f f' (x,a) = (f x , a * f' x)
exp = dlift exp exp
sin = dlift sin cos

- .. same for cos, \sqrt{x}, log
- Now we can define arbitrary complicated mathematical functions like f x = x*x * cos(x)
- .. and f 6.5 \rightsquigarrow (41.260827, 3.606820) \equiv (f(6.5), f'(6.5))

Haskell type classes

- Approach doesn't use Haskell's type classes ¹
- Introduce modified algebraic style library (≡ mathematical hierarchy) of type classes:

Haskell type classes

- Approach doesn't use Haskell's type classes ¹
- Introduce modified algebraic style library (≡ mathematical hierarchy) of type classes:
- AddGroup for addition and subtraction
- Monoid for multiplication, Group for division
- Ring for *structures* supporting addition and multiplication, Field adding division
- Module abstracts multiplication of complex object by element of basic domain (e.g.: $\lambda \cdot \vec{v}$)
- Number uses fromInt, fromDouble to convert standard numbers in our Dx domain

¹generic operations: declared within classes, datatypes accepting them are instances of them

Final approach

Applicatio

Conclusi

・ロン ・四 と ・ ヨン ・ ヨン

References

Motivation & Introduction

Differentiation techniques

1st approach

Final approach

Applications

Conclusion

References

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Differential Algebra and 'Lazy towers of derivatives'

- Compute (as promised) 'all' derivatives of functions (exact: an a priori unknown number)
- Data structure, representing expression of infinite domain: num. value e₀ and all derivatives [e₀, e₁, e₂, ...] (e_i ≡ e⁽ⁱ⁾) without explicit truncation, created by co-recursion!

Differential Algebra and 'Lazy towers of derivatives'

- Compute (as promised) 'all' derivatives of functions (exact: an a priori unknown number)
- Data structure, representing expression of infinite domain: num. value e₀ and all derivatives [e₀, e₁, e₂, ...] (e_i ≡ e⁽ⁱ⁾) without explicit truncation, created by co-recursion!
- Need background in Differential Algebra
- Field $(F, +, \times, /)$ with derivation $a \mapsto a'$
- $F = \mathbb{R}$ is trivial: $\forall x \in \mathbb{R} : x \mapsto 0$
- Extend field to *F*(*x*) by adjoining symbolic *x*
- If mathematical structure of the expressions known, we can discard the *x* → no symbolic computations
- E.g.: Represent polynomial by list of its coefficients

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Get it started

- Important: We assume that *x* and *x'* are algebraic independent and thus assign to expressions *e* all derivatives *e'*, *e''*,... by the derivation operator *e_n* → *e_{n+1}*
- We use no indeterminate and just operate on infinite, lazy lists of a priori independent elements
- We define the *co-recursive*, infinite, parameterized type

data Dif a = C a | D a (Dif a)

References

Get it started

- Important: We assume that x and x' are algebraic independent and thus assign to expressions e all derivatives e', e'', \ldots by the derivation operator $e_n \mapsto e_{n+1}$
- We use no indeterminate and just operate on infinite, lazy lists of a priori independent elements
- We define the co-recursive, infinite, parameterized type

data Dif a = C a | D a (Dif a)

- C a codes a constant a whose derivative is 0
- D e (D a (D b ...)) codes the numerical value of the expression (e) and the remainder the tower of derivatives (a = e', b = e'', ...)
- In general, a should be an instance of a field, e.g. Double

Overloaded Arithmetics for Dif domain

- The derivation operator df :: a -> a is declared in class Diff a
- Lifting procedures: df (C _) = C 0.0 ; df (D _ p) = p
- We implement the basic derivation laws
- The sum-rule is trivial, with Dif a instance of AddGroup class:

C x + C y = C (x+y) C x + D y y' = D (x+y) y' D x x' + D y y' = D (x+y) (x'+y')neg = fmap neg

Overloaded Arithmetics for Dif domain

- The derivation operator df :: a -> a is declared in class Diff a
- Lifting procedures: df (C _) = C 0.0 ; df (D _ p) = p
- We implement the basic derivation laws
- The sum-rule is trivial, with Dif a instance of AddGroup class:

C x + C y = C (x+y) C x + D y y' = D (x+y) y' D x x' + D y y' = D (x+y) (x'+y')neg = fmap neg

• Same for product-rule and unaltered constants (Monoid class):

C x * C y = C (x*y) C x * p = x*>p p@(D x x')*q@(D y y') = D (x*y)(x'*q+p*y')²

 $^{2}x*>s = fmap(x*)s$

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ●

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Overloaded Arithmetics (II)

- Reciprocal (¹/_{u(x)})' = ^{-u'(x)}/_{u(x)²} heavily uses *lazy evaluation* (Group class):
 recip (C x) = C (recip x)
 recip (D x x') = ip where
 ip = D (recip x) (neg x'*ip*ip)
- further trivial cases left out !

Overloaded Arithmetics (II)

• Reciprocal $(\frac{1}{u(x)})' = \frac{-u'(x)}{u(x)^2}$ heavily uses *lazy evaluation* (Group class): recip (C x) = C (recip x) recip (D x x') = ip where

ip = D (recip x) (neg x'*ip*ip)

- further trivial cases left out !
- Division might present some problems: 0/0

p@(D x x') / q@(D y y')
| x==0.0 && y==0.0 = x'/y' --L' Hopital-| otherwise = D (x/y) (x'*q - p*y'/(q*q))

usion Ref

Lifting and the chain rule

- Transcendental functions f like exp, sin, . . . need *lifting* to the Dif domain
- Definition of their list of formal derivatives fq, using lazy evaluation (Group class)
- E.g.: $(\exp(u(x)))' = u'(x) \cdot \exp(u(x))$

•
$$cos, log, \sqrt{x}$$
 in the same manner!

)

References

Lifting and the chain rule

- Transcendental functions f like exp, sin, . . . need *lifting* to the Dif domain
- Definition of their list of formal derivatives fq, using lazy evaluation (Group class)
- E.g.: $(\exp(u(x)))' = u'(x) \cdot \exp(u(x))$

- cos, log, \sqrt{x} in the same manner!
- and that's it ... we're done !!!
- Now: df (df (df (f 6.5))) $\rightsquigarrow -30.288818 \equiv f'''(6.5)$

Final appro

Applications

ons Con

References

Motivation & Introduction

Differentiation techniques

1st approach

Final approach

Applications

Conclusion

References

・ロト・西ト・山下・山下・山下・

Example applications

 Wide spread, huge application domain, 'ranging from reactor diagnostic, meteorology, oceanography, up to biostatistics' and quantum theory

References

Example applications

- Wide spread, huge application domain, 'ranging from reactor diagnostic, meteorology, oceanography, up to biostatistics' and quantum theory
- **One example**: Elegant coding of differential recurrences, like the *Hermite function*, without explicit truncation of recurrent computation !

$$H_0(x) = exp(\frac{-x^2}{2})$$

$$H_n(x) = \frac{1}{\sqrt{2n}}(x \cdot H_{n-1}(x) - \frac{d}{dx}(H_{n-1}(x)))$$

herm n x = cc where D cc _ = hr n (dVar x) hr 0 x = exp(neg x * x / fromDouble 2.0) hr n x = (x*z - df z)/(sqrt(fromInteger (2*n))) where z=hr (n-1) x

Final appro

Application

Conclusion

References

Motivation & Introduction

Differentiation techniques

1st approach

Final approach

Applications

Conclusion

References

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Final Remarks - Pro's and Con's

- clear, readable, compact (especially for towers!) and semantically powerful ~ nice coding tool!
- *Thunks* of lazy evaluation may introduce space leaks, when computing derivatives of high order Remedy: use truncated strict variant, like 1st approach, given number of derivatives to compute
- not extremely efficient, hence outperformed by C++
 implementations and semi-automatic systems
- Still useable and faster than symbolic systems

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Final Remarks - Pro's and Con's

- clear, readable, compact (especially for towers!) and semantically powerful ~> nice coding tool!
- *Thunks* of lazy evaluation may introduce space leaks, when computing derivatives of high order Remedy: use truncated strict variant, like 1st approach, given number of derivatives to compute
- not extremely efficient, hence outperformed by C++ implementations and semi-automatic systems
- Still useable and faster than symbolic systems
- Claim: straight forward generalization to vector or tensor objects
- Control structures (*if-then-else*) need arithm. relations on (infinite) Dif type Simplified remedy: just compare main values

 We've seen: Rewarding application of modern functional programming paradigms to scientific computing (usually domain of low-level languages)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Contribution

 We've seen: Rewarding application of modern functional programming paradigms to scientific computing (usually domain of low-level languages)

Contribution

- Type inference, Overloading ⇒ overloaded arithmetic operators, declare differentiation *variables*
- Lazy evaluation ⇒ derivation operator, applicable arbitrary (a priori unknown) number of times, without explicit truncation!
- Type classes, Lifting ⇒ extended arithmetics, valid for any basic domain, e.g.: C, P

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○○

Final appro

Applicati

is Concl

References

Motivation & Introduction

Differentiation techniques

1st approach

Final approach

Applications

Conclusion

References

Final appro

Applicatio

ns Conclu

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

References

- Karczmarczuk, Jerzy, Functional Differentiation of Computer Programs, Journal of HOSC (14), (2001), pp. 35-57
- *Karczmarczuk, Jerzy,* **Generating power of lazy semantics,** Journal of Theoretical Computer Science (vol. 187), (1997), pp. 203-219