
Motivation Pickler Combinator Sharing The End

Pickler Combinators – Explained

Benedikt Grundmann
benedikt-grundmann@web.de

Software Engineering Chair (Prof. Zeller)
Saarland University

Programming Systems Lab (Prof. Smolka)
Saarland University

Advanced Functional Programming – WS 2005/2006

Motivation Pickler Combinator Sharing The End

Martin Elsman.
Type-specialized serialization with sharing.
In Sixth Symposium on Trends in Functional Programming
(TFP’05), September 2005.

Andrew Kennedy.
Pickler combinators.
J. Funct. Program., 14(6):727–739, 2004.

Guido Tack, Leif Kornstaedt, and Gert Smolka.
Generic pickling and minimization.
Electronic Notes in Theoretical Computer Science,
148(2):79–103, March 2006.

Motivation Pickler Combinator Sharing The End

Outline

Motivation
Spellchecker
Solution preview

Pickler Combinator
Introduction
API & Implementation

Sharing
Problem
Solution

The End
Wrap-Up Pickler Combinator

Motivation Pickler Combinator Sharing The End

Outline

Motivation
Spellchecker
Solution preview

Pickler Combinator
Introduction
API & Implementation

Sharing
Problem
Solution

The End
Wrap-Up Pickler Combinator

Motivation Pickler Combinator Sharing The End

Example

• primitive Spellchecker application

• words stored in binary search tree

Example

type Word = String

data Tree
= N (Word, Tree, Tree)
| E

Motivation Pickler Combinator Sharing The End

Example

• primitive Spellchecker application

• words stored in binary search tree

Example

type Word = String

data Tree
= N (Word, Tree, Tree)
| E

Motivation Pickler Combinator Sharing The End

Example

• primitive Spellchecker application

• words stored in binary search tree

Example

type Word = String

data Tree
= N (Word, Tree, Tree)
| E

Motivation Pickler Combinator Sharing The End

Problem

How to store a tree?

createFile :: String -> String -> IO ()
loadFile :: String -> IO String

Therefore we need:

toString :: Tree -> String
fromString :: String -> Tree

Motivation Pickler Combinator Sharing The End

Problem

How to store a tree?

createFile :: String -> String -> IO ()
loadFile :: String -> IO String

Therefore we need:

toString :: Tree -> String
fromString :: String -> Tree

Motivation Pickler Combinator Sharing The End

Writing those by hand is NO fun

• Synchronize
• Type declaration
• toString implementation
• fromString implementation

• extensibility?

• Implementation is not declarative

Motivation Pickler Combinator Sharing The End

Writing those by hand is NO fun

• Synchronize
• Type declaration
• toString implementation
• fromString implementation

• extensibility?

• Implementation is not declarative

Motivation Pickler Combinator Sharing The End

Writing those by hand is NO fun

• Synchronize
• Type declaration
• toString implementation
• fromString implementation

• extensibility?

• Implementation is not declarative

Motivation Pickler Combinator Sharing The End

Outline

Motivation
Spellchecker
Solution preview

Pickler Combinator
Introduction
API & Implementation

Sharing
Problem
Solution

The End
Wrap-Up Pickler Combinator

Motivation Pickler Combinator Sharing The End

Solution: Pickling Combinators

word :: PU String
word = string

tree :: PU Tree
tree = alt tag [

wrap (Node, \(Node d) -> d)
(triple word tree tree)

, lift E
]

where tag (N _) = 0
tag E = 1

str = pickle tree (N ("foo", E, E))
N ("foo", E, E) = unpickle tree str

Motivation Pickler Combinator Sharing The End

Outline

Motivation
Spellchecker
Solution preview

Pickler Combinator
Introduction
API & Implementation

Sharing
Problem
Solution

The End
Wrap-Up Pickler Combinator

Motivation Pickler Combinator Sharing The End

What is a Pickler Combinator Library?

• A combinator library to create picklers

• We know what a combinator library is

• Idea: Primitive functions + Combinator Functions =
Powerful Functions

• “Higher-Order Functions for Parsing”
• “Embedding an interpreted language using higher-order

functions and types”

• So what is a pickler?

Motivation Pickler Combinator Sharing The End

What is a Pickler Combinator Library?

• A combinator library to create picklers
• We know what a combinator library is

• Idea: Primitive functions + Combinator Functions =
Powerful Functions

• “Higher-Order Functions for Parsing”
• “Embedding an interpreted language using higher-order

functions and types”

• So what is a pickler?

Motivation Pickler Combinator Sharing The End

What is a Pickler Combinator Library?

• A combinator library to create picklers
• We know what a combinator library is

• Idea: Primitive functions + Combinator Functions =
Powerful Functions

• “Higher-Order Functions for Parsing”
• “Embedding an interpreted language using higher-order

functions and types”

• So what is a pickler?

Motivation Pickler Combinator Sharing The End

What is a Pickler Combinator Library?

• A combinator library to create picklers
• We know what a combinator library is

• Idea: Primitive functions + Combinator Functions =
Powerful Functions

• “Higher-Order Functions for Parsing”

• “Embedding an interpreted language using higher-order
functions and types”

• So what is a pickler?

Motivation Pickler Combinator Sharing The End

What is a Pickler Combinator Library?

• A combinator library to create picklers
• We know what a combinator library is

• Idea: Primitive functions + Combinator Functions =
Powerful Functions

• “Higher-Order Functions for Parsing”
• “Embedding an interpreted language using higher-order

functions and types”

• So what is a pickler?

Motivation Pickler Combinator Sharing The End

What is a Pickler Combinator Library?

• A combinator library to create picklers
• We know what a combinator library is

• Idea: Primitive functions + Combinator Functions =
Powerful Functions

• “Higher-Order Functions for Parsing”
• “Embedding an interpreted language using higher-order

functions and types”

• So what is a pickler?

Motivation Pickler Combinator Sharing The End

What is a Pickler?

A pair of a pickling and an unpickling function for values of a
certain type.

Definition (Pickling)

Value 7→ Byte*

Definition (Unpickling)

Byte* 7→ Value

Motivation Pickler Combinator Sharing The End

What is a Pickler?

A pair of a pickling and an unpickling function for values of a
certain type.

Definition (Pickling)

Value 7→ Byte*

Definition (Unpickling)

Byte* 7→ Value

Motivation Pickler Combinator Sharing The End

What is a Pickler?

A pair of a pickling and an unpickling function for values of a
certain type.

Definition (Pickling)

Value 7→ Byte*

Definition (Unpickling)

Byte* 7→ Value

Motivation Pickler Combinator Sharing The End

What is a Pickler Combinator?

It is a pickler...

Definition (Pickling)

Value 7→ Byte*

Definition (Unpickling)

Byte* 7→ Value

Motivation Pickler Combinator Sharing The End

What is a Pickler Combinator?

It is a pickler extended to be composable.

Definition (Pickling)

Value 7→ Byte*

Definition (Unpickling)

Byte* 7→ Value

Motivation Pickler Combinator Sharing The End

What is a Pickler Combinator?

It is a pickler extended to be composable.

Definition (Pickling)

Value× Byte* 7→ Byte*

Definition (Unpickling)

Byte* 7→ Value

Motivation Pickler Combinator Sharing The End

What is a Pickler Combinator?

It is a pickler extended to be composable.

Definition (Pickling)

Value× Byte* 7→ Byte*

Definition (Unpickling)

Byte* 7→ Value× Byte*

Motivation Pickler Combinator Sharing The End

Outline

Motivation
Spellchecker
Solution preview

Pickler Combinator
Introduction
API & Implementation

Sharing
Problem
Solution

The End
Wrap-Up Pickler Combinator

Motivation Pickler Combinator Sharing The End

API

data PU α

Standard types

unit :: PU ()
bool :: PU Bool
char :: PU Char
string :: PU String
nat :: PU Int
zeroTo :: Int -> PU Int

Motivation Pickler Combinator Sharing The End

API

data PU α =
PU { appP :: (a, [Char]) -> [Char]

, appU :: [Char] -> (a, [Char])
}

Standard types

unit :: PU ()
bool :: PU Bool
char :: PU Char
string :: PU String
nat :: PU Int
zeroTo :: Int -> PU Int

Motivation Pickler Combinator Sharing The End

API

data PU α

pickle :: PU α -> α -> String
unpickle :: PU α -> String -> α

Standard types

unit :: PU ()
bool :: PU Bool
char :: PU Char
string :: PU String
nat :: PU Int
zeroTo :: Int -> PU Int

Motivation Pickler Combinator Sharing The End

API

data PU α

pickle :: PU α -> α -> String
unpickle :: PU α -> String -> α

Example

True = unpickle bool (pickle bool True)

Standard types

unit :: PU ()
bool :: PU Bool
char :: PU Char
string :: PU String
nat :: PU Int
zeroTo :: Int -> PU Int

Motivation Pickler Combinator Sharing The End

API

data PU α

pickle :: PU α -> α -> String
unpickle :: PU α -> String -> α

Standard types

unit :: PU ()
bool :: PU Bool
char :: PU Char
string :: PU String
nat :: PU Int
zeroTo :: Int -> PU Int

Motivation Pickler Combinator Sharing The End

Basic Picklers & Combinators

• Constant values

lift :: α -> PU α
lift x = PU snd (\s -> (x, s))

unit = lift ()

• Small numbers

smallInt :: PU Int
smallInt = PU (\(c,s) -> (toEnum c : s))

(\(c,s) -> (fromEnum c, s))

Motivation Pickler Combinator Sharing The End

Sequential Composition

sequ :: (β-> α) -> PU α -> (α->PU β) -> PU β

• pickles A followed by B

• A can be created from B

• pickled representation of B can depend on A

Example

pair :: PU α -> PU β -> PU (α, β)
pair pa pb = sequ fst pa (\ a ->

sequ snd pb (\ b ->
lift (a, b)))

Motivation Pickler Combinator Sharing The End

More Combinators

• map on picklers

wrap :: (α-> β, β -> α) -> PU α -> PU β
bool = wrap (toEnum,fromEnum) (zeroTo 1)

• wrap & recursion

zeroTo :: Int -> PU Int
zeroTo 0 = lift 0
zeroTo n

= wrap (\(h,l) -> h * 256 + l, (‘divMod‘ 256))
(pair (zeroTo (n ‘div‘ 256)) smallInt)

Motivation Pickler Combinator Sharing The End

Wrapping datatypes

alt :: (α -> Int) -> [PU α] -> PU α

wrap :: (α -> β, β -> α) -> PU α -> PU β

Example

tree = alt tag [
wrap (N, \(N d) -> d)

(triple word tree tree)
, lift E
]

where tag (N _) = 0
tag E = 1

Motivation Pickler Combinator Sharing The End

Outline

Motivation
Spellchecker
Solution preview

Pickler Combinator
Introduction
API & Implementation

Sharing
Problem
Solution

The End
Wrap-Up Pickler Combinator

Motivation Pickler Combinator Sharing The End

Sharing

xs

d

b g

a c f h

• We want sharing for
efficiency

• Remember “Fun with
binary heap trees”

• Example ys = insert (e, xs)

• (xs,ys) = unpickle
(pickle (xs, ys))

• This is BAD!!

• We want sharing!

Motivation Pickler Combinator Sharing The End

Sharing

xs

d

ys

d’

b g

a c f h

g’

f’

e

• We want sharing for
efficiency

• Remember “Fun with
binary heap trees”

• Example ys = insert (e, xs)

• (xs,ys) = unpickle
(pickle (xs, ys))

• This is BAD!!

• We want sharing!

Motivation Pickler Combinator Sharing The End

Sharing

xs

d

ys

d’

b g

a c f h

b’ g’

a’ c’ f’ h’

e

• We want sharing for
efficiency

• Remember “Fun with
binary heap trees”

• Example ys = insert (e, xs)

• (xs,ys) = unpickle
(pickle (xs, ys))

• This is BAD!!

• We want sharing!

Motivation Pickler Combinator Sharing The End

Sharing

xs

d

ys

d’

b g

a c f h

b’ g’

a’ c’ f’ h’

e

• We want sharing for
efficiency

• Remember “Fun with
binary heap trees”

• Example ys = insert (e, xs)

• (xs,ys) = unpickle
(pickle (xs, ys))

• This is BAD!!

• We want sharing!

Motivation Pickler Combinator Sharing The End

Sharing

xs

d

ys

d’

b g

a c f h

g’

f’

e

• We want sharing for
efficiency

• Remember “Fun with
binary heap trees”

• Example ys = insert (e, xs)

• (xs,ys) = unpickle
(pickle (xs, ys))

• This is BAD!!

• We want sharing!

Motivation Pickler Combinator Sharing The End

Outline

Motivation
Spellchecker
Solution preview

Pickler Combinator
Introduction
API & Implementation

Sharing
Problem
Solution

The End
Wrap-Up Pickler Combinator

Motivation Pickler Combinator Sharing The End

Sharing Implementation Idea

On pickling

• Remember all values we pickled

• If we want to pickle it again store a reference

On unpickling

• Remember unpickled values

• On a reference return corresponding value

⇒ We need a dictionary!

Motivation Pickler Combinator Sharing The End

Sharing Pickler Combinator

Need to memorize pickled values

Definition (Pickling)

Value× Byte* 7→ Byte*

Need to memorize unpickled values

Definition (Unpickling)

Byte* 7→ Value

Motivation Pickler Combinator Sharing The End

Sharing Pickler Combinator

Need to memorize pickled values

Definition (Pickling)

Value× Byte*× Dict 7→ Byte*× Dict

Need to memorize unpickled values

Definition (Unpickling)

Byte* 7→ Value

Motivation Pickler Combinator Sharing The End

Sharing Pickler Combinator

Need to memorize pickled values

Definition (Pickling)

Value× Byte*× Dict 7→ Byte*× Dict

Need to memorize unpickled values

Definition (Unpickling)

Byte*× Dict 7→ Value× Dict

Motivation Pickler Combinator Sharing The End

Sharing continued

share :: Eq α => PU α [α] -> PU α [α]
share p = memorizing logic as outlined before

tree = share $ alt tag ...

• Sharing limited to values of one type

• Normal equality test maximizes sharing
• Cyclic values

• equality test diverges
• pointer based test would work

Motivation Pickler Combinator Sharing The End

Sharing continued

share :: Eq α => PU α [α] -> PU α [α]
share p = memorizing logic as outlined before

tree = share $ alt tag ...

• Sharing limited to values of one type

• Normal equality test maximizes sharing

• Cyclic values

• equality test diverges
• pointer based test would work

Motivation Pickler Combinator Sharing The End

Sharing continued

share :: Eq α => PU α [α] -> PU α [α]
share p = memorizing logic as outlined before

tree = share $ alt tag ...

• Sharing limited to values of one type

• Normal equality test maximizes sharing
• Cyclic values

• equality test diverges
• pointer based test would work

Motivation Pickler Combinator Sharing The End

Sharing continued

share :: Eq α => PU α [α] -> PU α [α]
share p = memorizing logic as outlined before

tree = share $ alt tag ...

• Sharing limited to values of one type

• Normal equality test maximizes sharing
• Cyclic values

• equality test diverges

• pointer based test would work

Motivation Pickler Combinator Sharing The End

Sharing continued

share :: Eq α => PU α [α] -> PU α [α]
share p = memorizing logic as outlined before

tree = share $ alt tag ...

• Sharing limited to values of one type

• Normal equality test maximizes sharing
• Cyclic values

• equality test diverges
• pointer based test would work

Motivation Pickler Combinator Sharing The End

Outline

Motivation
Spellchecker
Solution preview

Pickler Combinator
Introduction
API & Implementation

Sharing
Problem
Solution

The End
Wrap-Up Pickler Combinator

Motivation Pickler Combinator Sharing The End

Pickler Combinator

Pro

• Declarative syntax – easy to use

• Synchronization problem solved

• only one code for both directions
• Type checker checks consistency of pickler and datatype

• Extensible

• Language implementation independent

Contra

• either no cycles

• or no minimization

• sharing only values of one type

Motivation Pickler Combinator Sharing The End

Pickler Combinator

Pro

• Declarative syntax – easy to use
• Synchronization problem solved

• only one code for both directions
• Type checker checks consistency of pickler and datatype

• Extensible

• Language implementation independent

Contra

• either no cycles

• or no minimization

• sharing only values of one type

Motivation Pickler Combinator Sharing The End

Pickler Combinator

Pro

• Declarative syntax – easy to use
• Synchronization problem solved

• only one code for both directions

• Type checker checks consistency of pickler and datatype

• Extensible

• Language implementation independent

Contra

• either no cycles

• or no minimization

• sharing only values of one type

Motivation Pickler Combinator Sharing The End

Pickler Combinator

Pro

• Declarative syntax – easy to use
• Synchronization problem solved

• only one code for both directions
• Type checker checks consistency of pickler and datatype

• Extensible

• Language implementation independent

Contra

• either no cycles

• or no minimization

• sharing only values of one type

Motivation Pickler Combinator Sharing The End

Pickler Combinator

Pro

• Declarative syntax – easy to use
• Synchronization problem solved

• only one code for both directions
• Type checker checks consistency of pickler and datatype

• Extensible

• Language implementation independent

Contra

• either no cycles

• or no minimization

• sharing only values of one type

Motivation Pickler Combinator Sharing The End

Pickler Combinator

Pro

• Declarative syntax – easy to use
• Synchronization problem solved

• only one code for both directions
• Type checker checks consistency of pickler and datatype

• Extensible

• Language implementation independent

Contra

• either no cycles

• or no minimization

• sharing only values of one type

Motivation Pickler Combinator Sharing The End

Pickler Combinator

Pro

• Declarative syntax – easy to use
• Synchronization problem solved

• only one code for both directions
• Type checker checks consistency of pickler and datatype

• Extensible

• Language implementation independent

Contra

• either no cycles

• or no minimization

• sharing only values of one type

Motivation Pickler Combinator Sharing The End

Pickler Combinator

Pro

• Declarative syntax – easy to use
• Synchronization problem solved

• only one code for both directions
• Type checker checks consistency of pickler and datatype

• Extensible

• Language implementation independent

Contra

• either no cycles

• or no minimization

• sharing only values of one type

Motivation Pickler Combinator Sharing The End

Pickler Combinator

Pro

• Declarative syntax – easy to use
• Synchronization problem solved

• only one code for both directions
• Type checker checks consistency of pickler and datatype

• Extensible

• Language implementation independent

Contra

• either no cycles

• or no minimization

• sharing only values of one type

More Samples

list :: PU α -> PU [α]
pair :: PU α -> PU β -> PU (α, β)
triple :: PU α -> PU β -> PU γ -> PU (α, β, γ)
maybe :: PU α -> PU (Maybe α)

Example

type URL = (String, String, Maybe Int, String)
type Bookmark = (String, URL)

string = list char
url = quad string string (maybe nat) string
bookmark = pair string url

More Samples

list :: PU α -> PU [α]
pair :: PU α -> PU β -> PU (α, β)
triple :: PU α -> PU β -> PU γ -> PU (α, β, γ)
maybe :: PU α -> PU (Maybe α)

Example

type URL = (String, String, Maybe Int, String)
type Bookmark = (String, URL)

string = list char
url = quad string string (maybe nat) string
bookmark = pair string url

	Motivation
	Spellchecker
	Solution preview

	Pickler Combinator
	Introduction
	API & Implementation

	Sharing
	Problem
	Solution

	The End
	Wrap-Up Pickler Combinator

