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Abstract Using an embedded, interpreted language to control a
complicated application can have significant software-engineering
benefits. But existing interpreters are designed for embedding into
C code. To embed an interpreter into a different language requires
a suitable API. Lua-ML is a new API that uses higher-order func-
tions and types to simplify the use of an embedded interpreter.
A typical application-program function can be added to a Lua-ML
interpreter simply by describing the function’s type.

1 Introduction

Suppose you have an application written in a statically typed, com-
piled language such as C, C++, or ML. If the application is com-
plicated, like a web server or an optimizing compiler, it will have
lots of potential configurations and behaviors. How are you to con-
trol it? If you use command-line arguments, you may find yourself
writing an interpreter for an increasingly complicated language of
command-line arguments. If you use a configuration file, you will
find yourself defining, parsing, and interpreting its syntax.

A better idea, which we owe to Ousterhout (1990), is to create
a reusable language designed just for configuring and controlling
application programs, i.e., for scripting. Making a scripting lan-
guage reusable means making it easy to embed its interpreter into
an application. An application that uses an embedded interpreter
is written in two languages. Most code is written in the original,
host language (e.g., C, C++, or ML). But key parts can be written
in the embedded language. This organization has several benefits:

• Complex command-line arguments aren’t needed; the embed-
ded language can be used on the command line.

• A configuration file can be replaced by a program in the em-
bedded language.

• It is easy to write an interactive loop that uses the embedded
language to control the application.

• The application programmer need not implement lexing, pars-
ing, or evaluation; they come from the embedded interpreter.

To gain these benefits, the major effort required is the effort of
writing the glue code that grants control of the host application to
the embedded language.

The benefits above were first demonstrated by Tcl (Ouster-
hout 1990), which was followed by embedded implementations
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of other languages, including Python, Perl, and several forms
of Scheme (Laumann and Bormann 1994; Benson 1994; van
Rossum 2002; Jenness and Cozens 2002), as well as by another
language designed expressly for embedding: Lua (Ierusalimschy,
de Figueiredo, and Celes 1996a). But to use any of these embed-
ded languages, you have to write your application in C (or C++).
If you prefer a statically typed, functional language like ML, this
paper explains how you too can reap the benefits of embedded lan-
guages.

To create an embedded language, you must design not only the
language itself but also an interface that allows host-language ap-
plication code to be scripted from within the embedded language.
This interface—the embedding API—is the subject of this paper,
which presents Lua-ML, a new API for embedding. Lua-ML pro-
vides two significant benefits:

• Type safety is guaranteed: it is impossible for an error in glue
code to lead to an unexplained core dump.

• In almost all cases, glue code for a function is replaced by a
simple description of the function’s type—and this description
is checked for correctness at compile time. Applications there-
fore require significantly less glue code than similar applica-
tions written in C.

Lua-ML is supported by two technical contributions: an adapta-
tion of Danvy’s (1996) type-indexed functions for partial evalua-
tion (Section 3.1), which makes it easy to embed host-language
functions (Section 3.2); and a programming convention that en-
ables host-language functions to inspect or modify the state of an
embedded interpreter (Section 3.3).

To focus attention clearly on the API, Lua-ML does not intro-
duce a new host or embedded language; it uses existing languages.
As an embedded language, I have chosen Lua, which is clean, flex-
ible, efficient, and easy to implement. Lua enjoys a modest but
growing following; its most visible users may be the developers
of such popular games as Grim Fandango, Baldur’s Gate, and Es-
cape from Monkey Island (Ierusalimschy, de Figueiredo, and Ce-
les 2001). Although convenient, Lua is not essential; it could be
replaced by Tcl, Perl, or some other dynamically typed language.

As a host language, I have chosen Objective Caml (Leroy
et al. 2001), a popular dialect of ML. Objective Caml provides
algebraic data types, programming by pattern matching, higher-
order functions, Hindley-Milner type inference, a sophisticated
system of parameterized modules, and an object system that is
compatible with type inference. Lua-ML uses higher-order func-
tions and types in essential ways, but Objective Caml could be
replaced by Standard ML or some other higher-order, typed lan-
guage. (Preliminary experiments with Haskell show that a similar
API should be possible for Haskell. Haskell’s type classes reduce
glue code even further, but the API is complicated by the need to
use monads to describe Lua functions.)

6



2 Lua-ML summarized and compared

The distinctive benefits of Lua-ML come from the part of the API
used to integrate application-specific code into the embedded in-
terpreter. Because this part would be hard to understand in isola-
tion, especially for readers who have no experience using a similar
API, I summarize the full API here. The summary looks at the
Lua language, at the API’s high-level view of an interpreter, at the
transfer of values between host code and embedded code, and at
the integration of application-specific code and data into the inter-
preter.

Because it is difficult to evaluate the merits of an API in isola-
tion, I include comparisons with three established APIs: Tcl 7.3,
Lua 2.5, and Lua 4.0. These comparisons point out not only the
distinctive aspects of Lua-ML but also those aspects that are simi-
lar to related APIs.

2.1 What the language looks like

An API can be hard to understand unless you know a little about
the language behind it. This section highlights the salient features
of Lua and Tcl.

Lua 2.5 and 4.0 Lua-ML implements the Lua language ver-
sion 2.5, which is described by Ierusalimschy, de Figueiredo, and
Celes (1996b). Version 2.5 is relatively old, but it is mature and
efficient, and it omits some complexities of later versions. The
current version as of early 2003 is Lua 4.0; I mention differences
where appropriate.

Lua is a dynamically typed language with six types: nil, string,
number, function, table, and userdata. Nil is a singleton type con-
taining only the value nil. A table is a mutable hash table in which
any value except nil may be used as a key. Userdata is a catchall
type, which enables an application program to add new types to
the interpreter. Except for table, the built-in types are immutable;
userdata is mutable at the application’s discretion.

Lua has three significant syntactic categories: expression; state-
ment; and top-level chunk, which may be a statement or a function
definition. Functions may be defined only at top level; Lua 2.5 has
first-class, non-nested functions. Versions 4.0 and 5.0 (beta) of-
fer nested functions, and each version has a different mechanism
for giving a nested function access to parameters and variables of
enclosing functions.

The Lua language has two unusual features. First, a Lua func-
tion may accept a variable number of parameters and return a vari-
able number of results. Moreover, the number of actual parameters
in a call need not match the number of formal parameters a func-
tion expects. If there is a mismatch, the parameters are adjusted: if
a function receives more actual parameters than it expects, the ex-
tra actual parameters are dropped, and if a function receives fewer
actual parameters than it expects, extra formal parameters are set
to nil. A similar adjustment is applied to results.

Lua’s other unusual feature is fallbacks, which provide a dy-
namic exception mechanism similar to a PL/I on-unit. A fallback
is a Lua function that is called when a built-in operation fails, e.g.,
when Lua code tries to retrieve an index not present in a table.
Fallbacks can be used to implement error handling, overloading,
inheritance and other features. In Lua 4.0, fallbacks are replaced
by a similar but more powerful mechanism called tag methods.
Further details are not relevant to this paper.

Tcl 7.3 Tcl 7.3 is described by Ousterhout (1994). Tcl has no
type system or type checking: the only values are immutable
strings and named hash tables, and a hash table is represented as

a string containing the table’s name. Whether a string stands for
itself or the name of a table depends on the context in which it
appears.

Tcl has only two syntactic categories: expression and command.
The command category includes what in another language might
be declarations, statements, and function definitions. For exam-
ple, the proc command introduces a new “procedure” command,
which executes its body (a sequence of commands) in a fresh en-
vironment with private local variables. Tcl’s concrete syntax has
almost no grammatical structure: it says only that a command is
a name applied to a list of strings. The meaning of each string is
determined by the command, which decides if a string represents
a value, a command or expression that should be evaluated, or a
syntactic keyword. For example, the if command evaluates its
condition as an expression, evaluates its true or false branch as a
command, and treats then and else as keywords.

2.2 How an interpreter appears in the API

At a high level, Lua-ML looks much like other APIs. An appli-
cation can create many interpreters, each of which has mutable
state; it can manipulate the global variables and functions of an
interpreter; and it can evaluate Lua code in the context of an inter-
preter.

An interpreter The state of a Lua-ML interpreter is represented
by a value in the host language, Objective Caml. The state includes
a table of global variables; a table of fallbacks; and a summary of
the call stack, which is printed in the event of a fatal error. An
interpreter is created in two stages: compile-time and run-time.
At compile time, the application supplies a (possibly empty) set
of libraries to an ML module called MakeInterp, which returns
an interpreter module we will call Interp.1 At run time, calling
Interp.mk creates a fresh instance of the interpreter; the instance
has type Interp.state, which we write simply as state.

Lua 4.0 and Tcl 7.3 treat the interpreter similarly: its state is
represented by a value in the host language (of type lua State*
or Tcl Interp, respectively). In Lua 4.0, the visible state of an
interpreter includes a stack of values. This stack can be manip-
ulated only through the API; its representation is not exposed. In
Tcl 7.3, an interpreter i includes a field i->result, which is used
to communicate results and error messages from commands. The
Lua 2.5 API is unusual in that the interpreter and its state are im-
plicit; interpreters cannot be created or destroyed, so an application
contains exactly one interpreter.

Variables, functions, and commands In Lua-ML, application
code can add or remove global Lua variables or change their val-
ues, all by manipulating the global-variable table in the inter-
preter’s state. Functions are treated the same as variables: a Lua
function is simply a variable that has a function value. The Lua 4.0
and Lua 2.5 APIs are similar. Lua 4.0 also includes the capability
of bundling a function value with other values to form a kind of
closure.

The Tcl 7.3 API is only slightly different. It provides one set
of API functions for manipulating values, which are strings, and
another set of API functions for manipulating commands. A com-
mand is represented as a C function bundled with a value of type
ClientData, which may be a pointer to mutable state. This rep-
resentation enables a Tcl command to simulate a closure or an
object.

1The compile-time composition of libraries to form the interpreter
module is beyond the scope of this paper; Ramsey (2003) presents details.
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Evaluation In each of these APIs, the host application is ulti-
mately in control: It decides what embedded code is evaluated
when. Evaluation requires code and an environment, and each sys-
tem makes the environment part of the state of the interpreter. All
four APIs provide functions that evaluate sequences of definitions
(or commands), which may be located in strings or files. Most
APIs can evaluate definitions at top level only, but Tcl 7.3 makes it
possible to evaluate a command either in the top-level environment
or in the environment of the currently active function.

Only the Tcl API provides functions that evaluate expressions.
Such functions are necessary because a string passed to a Tcl com-
mand may represent a keyword, a value, an expression, or another
command. It is up to the implementation of the command to know
which is which and to call the appropriate API function.

2.3 How values cross the interface

The Lua-ML, Lua, and Tcl APIs differ most greatly in their treat-
ment of values. We consider how an embedded value appears to
host code, how memory is managed, and how values are converted
between host and embedded forms.

What an embedded value looks like In Lua-ML, a Lua value
is represented by a value in the host language (Objective Caml).
Such a value has type value, which is exposed to an application
as follows:
type value

= Nil
| Number of float
| String of string
| Function of srcloc * funty
| Userdata of userdata
| Table of table

and funty = value list -> value list
and table = (value, value) Luahash.t

This declaration defines value to be one of the six alternatives
listed above, and it defines funty and table to be a function type
and a hash table, respectively. The type funty doesn’t mention
state, which should surprise you, because a Lua function can in-
spect and modify the state of its interpreter. All is revealed below,
in Section 3.3. Types srcloc and userdata are abstract types,
the declarations of which are not shown. The type srcloc rep-
resents the source location at which a function is defined. The
type userdata represents application-specific data declared in li-
braries.
Luahash.t is a type constructor exported by a hash-table ab-

straction that is part of the Lua-ML API. It can be used indepen-
dently of a Lua interpreter.

In Lua 4.0, a Lua value cannot be represented as a value in the
host language: every Lua value is hidden inside an interpreter.
Such a value is either on the interpreter’s stack or is accessible
through an opaque reference. API functions that manipulate values
do so by referring to stack positions. A reference can be created
from a value on a stack and can later be used to push that same
value back on the stack.

In Lua 2.5, a value may be on the stack or hidden behind
a reference, but it may also be converted to a C value of type
lua Object. Some API functions use stack positions and others
use arguments or results of type lua Object.

In Tcl 7.3, a value is always represented as a string and has type
char *. Such strings contain no embedded nulls.

Hash-table abstractions are included in Lua 4.0 and Lua 2.5,
but these abstractions can be used only in conjunction with an in-
terpreter, because the hash-table operations use the interpreter’s

stack. By contrast, Tcl 7.3, like Lua-ML, provides a hash-table
abstraction that can be used independently of an interpreter.

Memory management In Lua-ML, both embedded values and
host values are managed by the host’s garbage collector; the API
need not mention memory management. The other APIs don’t
have the luxury of a built-in garbage collector, so they have to deal
with memory management. Both Lua 4.0 and Lua 2.5 provide a
special-purpose garbage collector for Lua values only. Of the two,
Lua 4.0 has the simpler API for collection, because every root is
either on the interpreter’s stack or is pointed to by a reference. Tcl
does not use garbage collection: Because every value is a string
and therefore contains no pointers, it suffices for the API to specify
whether application code or the Tcl implementation is responsible
for freeing each string’s memory, and similarly for allocating.

Conversion between host and embedded values Lua-ML ex-
poses the representation of a Lua value, so functions that convert
between Lua values and ML values are not required. Such func-
tions are, however, extremely convenient. Lua-ML provides type-
specific conversion functions in pairs: embed and project. The
embed function is the mapping from Caml into Lua, which always
succeeds; project is the mapping from Lua to Caml, which can
fail (and raise an exception) if the Lua value has the wrong type.
For example, one might convert a Caml floating-point value to a
Lua value by calling float.embed, or convert a Lua number to a
Caml floating-point value by calling float.project. The main
innovation in Lua-ML is that it provides higher-order functions
that can create an unlimited supply of conversion functions. The
details are the topic of Section 3.1.

Lua 4.0 also provides conversion functions, but there are only
six pairs: one for each basic Lua type. Because values are abstract,
the API also provides a test function for each basic Lua type. For
example, one might use lua isnumber to see if a Lua value is a
number, lua getnumber to convert a Lua number to a C floating-
point value, and lua pushnumber to convert a C floating-point
value to a Lua value. The conversion and testing functions, like
other functions in the Lua 4.0 API, refer to Lua values on the Lua
stack. The conversion interface in Lua 2.5 is similar, except that
only conversion from C to Lua uses the stack; the testing functions
and the conversion functions from Lua to C accept arguments of
type lua Object.

In Tcl 7.3, the API provides conversion procedures for integers,
floating-point numbers, Booleans, and lists. To convert from a
Tcl value to a C value, one uses a type-specific procedure that
writes its result through a pointer and returns a termination code,
which indicates success or failure. For example, the API procedure
int Tcl GetDouble(Tcl Interp *i, char *s, double *p)
tries to convert the Tcl value s to a floating-point value, stores the
result in *p, and returns a termination code. To convert from a
C value to a Tcl value, an application uses standard C procedures
such as sprintf; no API procedures are needed.

2.4 Application-specific code and data

An API should make it easy to embed application-specific code or
data into an interpreter; we compare the APIs.

2.4.1 Embedding a function or command

The glue code used to make host functions available in the embed-
ded interpreter represents most of the work of using an embedded
language. For each API we consider, we explain how to embed
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a function, and we show example glue code used to embed the
library function atan2.

Lua-ML In Lua-ML, an application programmer can define a
new Lua function by writing an ML function that takes a list
of values as arguments and returns a list of values as results.
(Such a function’s access to interpreter state is discussed in Sec-
tion 3.3.) It is much more convenient, however, to define an or-
dinary ML function and to convert it to a Lua function by using
the embed member of an embedding/projection pair. For example,
my atan2 is the Lua version of atan2.

my_atan2 : value list -> value listlet my_atan2 =
let f = func (float **-> float **-> result float)
in f.embed atan2

On the second line, the expression func (float **-> float
**-> result float) builds an embedding/projection pair for the
ML type float -> float -> float, which takes two floating-
point arguments and returns a single floating-point result. The
Lua-ML operators func, **->, and result are explained in Sec-
tion 3.2, and their types are shown in Table 2. The box at the top
of the display gives the type of my atan2.

The expression (func t).embed is so common that we pro-
vide an abbreviation efunc t. We could have written only efunc
(float **-> float **-> result float) atan2. Thus, the only
glue code needed is a description of atan2’s type. This lack of
glue code is typical of the great majority of embedded functions.

Lua 2.5 and 4.0 In Lua 2.5, an application programmer defines
a new Lua function by writing a C function that takes no argu-
ments and returns no results. This function gets its arguments
from the Lua stack, and it returns its results, of which there may
be more than one, by pushing them onto the stack (on top of the
arguments). A function may indicate an error by calling the API
function lua error, which uses longjmp to achieve the effect of
raising an exception.

Here is atan2 in Lua 2.5. A Lua function conventionally ig-
nores extra arguments, so the number is not checked.

void my_atan2(void) {
if (!lua_isnumber(lua_getparam(1)))
lua_error("first arg not a number");

if (!lua_isnumber(lua_getparam(2)))
lua_error("second arg not a number");

lua_pushnumber(
atan2(lua_getnumber(lua_getparam(1)),

lua_getnumber(lua_getparam(2))));
}

The example has a similar flavor in Lua 4.0, except that the state
of the interpreter is passed explicitly throughout.

Tcl 7.3 In Tcl 7.3, an application programmer defines a new Tcl
command by writing a C function that is passed an interpreter i
and a list of arguments. Each argument is a string, and the list
is represented using the C convention of argc and argv. An ar-
gument may represent a value or it may represent syntax, which
may be evaluated to produce a value; the intepretation of each ar-
gument is up to the command procedure. A command procedure
is also passed an argument of type ClientData, which makes it
possible to write a command that simulates a method of an object
or that simulates a closure.

When executed, a command procedure has a side effect on
i->result and returns a termination code. The code may indicate
successful termination, an error, a nonlocal exit such as break,
or an application-specific termination condition. The termination
code, like longjmp, provides a way to work around the lack of
exceptions in C.

Here is atan2 in Tcl 7.3.
int my_atan2(ClientData d, Tcl_Interp *i,

int argc, char *argv[])
{
double x, y;
if (argc != 3) {
i->result = "wrong # of args";
return TCL_ERROR;

}
if (Tcl_GetDouble(i, argv[1], &x) != TCL_OK)
return TCL_ERROR;

if (Tcl_GetDouble(i, argv[2], &y) != TCL_OK)
return TCL_ERROR;

sprintf(i->result, "%f", atan2(x,y));
return TCL_OK;

}

The types of Tcl’s conversion procedures enforce an assembly-
language style of programming, in which each intermediate result
must be named. The Lua 2.5 and 4.0 APIs allow more natural
programming, because the result of calling a conversion procedure
may be passed directly to another procedure. Lua-ML enables the
most natural style: each conversion procedure is used declaratively
to describe a function’s type, and the ML code for the function
itself need not use any conversion procedures.

2.4.2 Embedding application-specific data

Application-specific code often operates on data of application-
specific types. Each of the APIs we consider uses a different mech-
anism to convert an application-specific host value to a value in the
embedded language.

In Lua-ML, each application-specific type is declared in a li-
brary. The library supplies a definition of the type, a function used
to print a value of the type, and a function used to compare two val-
ues for equality. Libraries are compiled separately and combined
using the ML modules system (Ramsey 2003). The combined li-
braries define the userdata type used in the interpreter, and they
provide an embedding/projection pair for each application-specific
type. The design provides extensibility and separate compilation
while preserving type safety; the details are beyond the scope of
this paper.

In Lua 4.0 and 2.5, a value of application-specific type must be
represented by a C value of type void * and by an accompany-
ing tag, which is a small integer. The tag can be used to distin-
guish different application-specific types. A tag and pointer may
be converted to a Lua value of type userdata, from which the same
tag and pointer can be extracted. Type safety is ultimately left
up to the programmer, but unsafe code can easily be isolated in
an application-specific conversion routine. An example appears in
Appendix A.

In Tcl 7.3, a value of application-specific type must be repre-
sented as a string. Tcl lacks the equivalent of Lua’s tag: the API
provides no help in distinguishing an application-specific string
from any other string, and making sure such strings are unique
and are used safely is entirely up to the application. An applica-
tion programmer is advised to give every value a unique name, to
keep a hash table in private state, and to use the hash table to map
the name to the value (Ousterhout 1994, p. 283). Knowing when
to use this hash table is up to the programmer.

3 Technical contributions of Lua-ML

Lua-ML’s advantages stem from its handling of functions.

• A function can be embedded with almost no glue code because
embedding can be extended to an unbounded number of types,
including function types (Section 3.1).
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• Objective Caml and Lua use different models of functions, and
each language reacts differently to a function call in which
arguments are missing. These differences are cleverly hid-
den by the embedding/projection pairs for function types (Sec-
tion 3.2).

• Although almost 90% of embedded Caml functions have no
need to inspect or modify the state of a Lua interpreter, some
do. Lua-ML supports both kinds of functions without messing
up the API (Section 3.3).

3.1 Embedding and projection

This section describes the implementation of embedding and pro-
jection functions. To represent an embedding/projection pair, we
define type (’a, ’b) ep: an embed function for converting a
value of type ’a into a value of type ’b and a project function
for the opposite conversion. For the special case where we are
embedding into a Lua value, we define type ’a map.

type (’a, ’b) ep =
{ embed : ’a -> ’b; project : ’b -> ’a }

type ’a map = (’a, value) ep

One example pair is float, which has type float map and is
introduced in Section 2.3 above. The value float.embed is the
function (fun x -> Number x), which takes the Caml number x
into the corresponding Lua value, which is built by applying the
Number constructor to x.2

Defining float.project, which converts from a Lua value to
a floating-point number, is more complicated, because in Lua, a
string may be used where a floating-point value is expected, pro-
vided the string represents a floating-point number. The value
float.project is the function

function
| Number x -> x
| String s when is_float_literal s ->

float_of_string s
| v -> raise (Projection (v, "float"))

This function maps a Lua number to the same Caml number. It
also maps a Lua string s to the floating-point number represented
by s, provided that s satisfies is float literal, which checks
to see that s is an appropriate string. If it gets any other kind
of value, it raises the Projection exception, indicating that the
value cannot be converted to a floating-point number. In Lua-ML,
every dynamic type error raises Projection.

To provide a small set of conversion functions is not new. What
Lua-ML adds is the ability to create pairs of conversion functions
for arbitrarily many ML types. In other words, embedding and
projection are a type-indexed family of functions. The idea is in-
spired by Danvy (1996), who uses a similar family to implement
partial evaluation. Danvy (1998) credits Andrzej Filinski and Zhe
Yang with originating this family, which has also been indepen-
dently adapted by Benton (2003) for use in embedded interpreters.

We build a type-indexed family of functions as follows.

• For a base type, such as float, we provide a suitable embed-
ding/projection pair. Lua-ML includes pairs for float, int,
bool, string, unit, userdata, table, and value.

• For a unary type constructor, such as list, we provide a
higher-order function that maps an embedding/projection pair
to an embedding/projection pair. Lua-ML includes such func-
tions for the list and option type constructors.

• For a type constructor of two or more arguments, we continue
in a similar vein. Such constructors are rare, except for the ar-

2In Objective Caml, unlike in Haskell or Standard ML, a datatype con-
structor cannot be used as a function, so the η-expansion is necessary.

type ’a map =
{ embed : ’a -> value ;
project : value -> ’a }

float : float map
int : int map
bool : bool map
string : string map
userdata : userdata map
unit : unit map
value : value map
table : table map
list : ’a map -> ’a list map
option : ’a map -> ’a option map
default : ’a -> ’a map -> ’a map

Table 1: Constructors for embedding/projection pairs

row constructor, which describes a function type. The arrow
needs careful treatment because Lua and Caml treat partial ap-
plication differently.

Table 1 gives the types of these functions.
The implementations of these functions are more interesting

than you might expect, because Caml and Lua are substantially dif-
ferent. For example, Lua lacks the int, bool, list, and option
types, and Lua’s showcase, the table type, is seldom used in Caml
functions. Resolving such inconsistencies requires suitable pro-
gramming conventions, and the conventions are embodied in em-
bedding/projection pairs. This implementation strategy makes it
easy to add new conventions and to use consistent conventions
throughout a program.

One such convention is shown above: a string can represent a
floating-point number. Here are some others:

• Any Lua value can be interpreted as a Boolean; nil represents
falsehood, and every non-nil value represents truth. This con-
vention is embodied by the bool pair, which has type bool
map.

bool : bool maplet bool =
{ embed = (fun b -> if b then Number 1.0

else Nil);
project = (fun v -> v <> Nil)

}

• A number may be used where a string is expected.

• A list should be represented as a Lua table, where the elements
of a list of length n are stored with keys 1, 2, . . . , n.

These conventions, code for which is shown in Appendix B, are
part of the idiom of Lua 2.5 and 4.0. Some, like the Boolean and
list conventions, have syntactic and semantic support in the Lua
language. Another common convention is that a function may al-
low nil to stand for a default argument. We support this conven-
tion with the default function, which has type ’a -> ’a map
-> ’a map; the pair default v t behaves just like the pair t,
except it projects nil to v.

For Lua-ML, we also invented new conventions. For exam-
ple, ML has a built-in type constructor option. A value of type
’a option may be None, which means the absence of any value,
or it may be Some x, which means the value x, where x has
type ’a. In our convention, the Lua value nil stands for None, and
any other value stands for Some of that value. (This convention
fails if a value v of type ’a is itself embedded in Lua as nil, since
the convention projects nil as None, not as Some v.) To build an
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embedding/projection pair for type ’a option, we need an em-
bedding/projection pair for type ’a, which here is called t:

option : ’a map -> ’a option maplet option t =
{ embed = (function None -> Nil

| Some x -> t.embed x);
project = (function Nil -> None

| v -> Some (t.project v))
}

As shown in the box, option has type ’a map -> ’a option map.
Another convention involves embedding and projection of poly-

morphic functions. For example, Objective Caml’s list-reversal
function, List.rev, has type ’a list -> ’a list: It is a poly-
morphic function that can reverse a list containing any type of
value. But Lua does not have parametric polymorphism, so what
is the embedding/projection pair that corresponds to the type vari-
able ’a? It is the value pair, which embeds and projects using the
identity function. The Lua function

efunc (list value **-> result (list value)) List.rev

reverses any Lua list, no matter what Lua values the list contains.
Most programming conventions are easily embodied in simple

embedding/projection pairs such as are shown above. The big ex-
ception is the convention for functions.

3.2 Conventional uses of functions

In Objective Caml, a function of multiple arguments is con-
ventionally defined in its Curried form, i.e., as a function that
returns another function. For example, the library function
String.index has type string -> (char -> int). We nor-
mally write such a type as string -> char -> int, because the
type arrow is right-associative. To apply such a function, we write
(String.index "hello") ’e’, or because function applica-
tion is left-associative, simply String.index "hello" ’e’. In
Objective Caml, there is no real difference between a function that
takes two arguments and a function that takes one argument and
returns a new function. But in Lua, there is a big difference! The
difference can be explained by considering what happens when a
function is applied to only some of its arguments, i.e., when it is
partially applied.

In Caml, a partially applied function, such as String.index
"hello", creates a closure, which represents a new function that
is returned. This new function, when itself applied to an argument
such as ’e’, behaves as would String.index applied to the two
arguments "hello" and ’e’. In Lua, a partially applied function
is adjusted, which means that any “missing” arguments are filled in
with nils. In Lua, therefore, String.index("hello", ’e’) is
different from String.index("hello")(’e’)3 , which is equiv-
alent to String.index("hello", nil)(’e’). By convention,
the first, unCurried form is expected.

When embedding a multi-argument Caml function into Lua,
we have to convert it from Curried to unCurried form. (One
can retain the Curried form by using the Lua-ML operator -->,
which has type ’a map -> ’b map -> (’a -> ’b) map, but
we have never used this operator in a real program, and its im-
plementation has no interesting features.) We convert a function
by describing its type using the **-> operator.4 The **-> oper-
ator combines the type of each argument with a result type. The
result type is not an ordinary embedding/projection pair but a spe-
cial value that has the abstract type ’a mapf (“map to function”),
where ’a is the type of the value returned by the Caml function.

3This syntax is available in Lua 4.0, which provides first-class func-
tions, but in Lua 2.5 such an expression is not even syntactically correct; it
would have to be written x = String.index("hello"); x(’e’).

4The operator’s name begins with ** because that is the only way to
make a user-defined operator infix and right-associative.

type ’a mapf (* abstract type *)
**-> : ’a map -> ’b mapf -> (’a -> ’b) mapf
result : ’a map -> ’a mapf
func : ’a mapf -> ’a map

Table 2: Embedding and projection for functions

Table 2 shows the types of the function-conversion operations.
To convert a Caml function into unCurried, Lua form, we take
the embedding/projection pair for the result, convert it to a result
type using result, add the argument types with **->, and fi-
nally convert the result type back to an embedding/projection pair
using func. For example, if we have a Caml function of type
t -> u -> v -> w, we turn it into a Lua function of three argu-
ments by using the embedding/projection pair produced by func
(t **-> u **-> v **-> result w).

The representation of type ’a mapf, which is not exposed in
the API, is an embedding/projection pair between ’a and value
list -> value list (thus the nickname “map to function”).
The function-conversion operations that work with mapf are a bit
tricky. The simplest is func: embedding adds srcloc and applies
Function, while projection strips Function and ignores srcloc.

type ’a mapf = (’a, value list -> value list) ep
func : ’a mapf -> ’a map

let func (arrow : ’a mapf) : (’a map) =
{ embed = (fun (f : ’a) ->

Function (caml_fun, arrow.embed f));
project =
(function
| Function (_, f) -> (arrow.project f : ’a)
| v -> raise (Projection (v, "function")))

}

Value caml fun of type srcloc identifies the function as an em-
bedded function. A function translated from Lua source code
would have a srcloc field indicating its source-code location.

The details of **-> and result are a bit technical, but because
the resulting embedding and projection functions are novel, they
are worth presenting anyway. The **-> operation converts be-
tween Curried Caml functions and unCurried Lua functions. It
builds an embedding/projection pair inductively from firstarg,
which is an embedding/projection pair for the first argument,
and from lastargs, which is an embedding/projection pair for
a function that takes one less argument. To build firstarg
**-> lastargs, we need an embedding (apply) and a projec-
tion (unapply).

**-> : ’a map -> ’b mapf -> (’a -> ’b) mapf
apply : (’a -> ’b) -> (value list -> value list)
unapply : (value list -> value list) -> (’a -> ’b)

let ( **-> ) (firstarg : ’a map) (lastargs : ’b mapf)
: ( (’a -> ’b) mapf ) =

let apply (f : ’a -> ’b) = fun actuals ->
let v, vs = match actuals with [] -> Nil, []

| h :: t -> h, t in
let f_v = f (firstarg.project v) in
lastargs.embed f_v vs

in
let unapply (f_lua : value list -> value list) =

fun (v : ’a) ->
lastargs.project
(fun vs -> f_lua (firstarg.embed v :: vs))

in
{ embed = apply; project = unapply }
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The apply function takes a Caml function f of type ’a -> ’b
and converts it to a Lua function of type value list ->
value list. This converted function takes its actual arguments
actuals, puts the first argument in v, and puts any remaining
arguments in vs. (This code also implements adjustment: if
the list of arguments is empty, it is as if the first argument had
been Nil.) Because the Caml function f is Curried, it can be
partially applied to the first argument v to produce f v, which
has type ’b. Function f v is then converted to a Lua function (by
lastargs.embed) and applied to the remaining arguments.

The projection function unapply takes a Lua function f lua
and converts it to a Caml function of type ’a -> ’b. The Caml
function takes its first argument v and must return a function of
type ’b. The Caml function therefore converts v to Lua using
firstarg.embed, then builds a new, anonymous Lua function.
This anonymous function takes the remaining arguments vs and
applies f lua to all the arguments. The anonymous Lua func-
tion is then converted to a Caml function of type ’b by using
lastargs.project.

The base case for the conversion of functions is a pair for a
function that takes no arguments and returns a result of type ’a.
Such a pair is produced by result. In turn, result uses an em-
bedding/projection pair r that converts between a result of type ’a
and a Lua value. result : ’a map -> ’a mapf

let result (r : ’a map) : (’a mapf) =
{ embed = (fun (v:’a) -> fun args -> [r.embed v]);

project = (fun fl -> r.project (take1 (fl [])))
}

To embed a result as a no-argument Lua function, we take the re-
sult v and produce a Lua function that ignores its arguments and
returns the singleton list holding the result of embedding v. To
project a Lua function fl as a result, we apply fl to the empty
list of arguments, take the first element of the list of results, and
project that Lua value into a Caml value. (If the list of results
is empty, take1 returns Lua’s Nil, which is another example of
adjustment.)

The three functions func, **->, and result cooperate to cre-
ate a natural mapping between Caml functions and Lua functions.
Using this mapping, Caml code defines and uses functions in Cur-
ried style, which is natural for Caml. Lua code defines and uses
functions in unCurried style, which is natural for Lua. The only
aspect that is slightly unnatural is having to apply result to the
embedding/projection pair for each result type. Programmers soon
learn to apply result, however, because if it is mistakenly omit-
ted, Caml’s type checker complains.

3.3 Functions and the interpreter’s state

A Lua function can modify the state of its interpreter, e.g., by
changing the value of a global variable. Such a function might
naturally be expected to have the type state -> value list
-> value list. But we actually use value list -> value
list. How and why to do so is not obvious at first, and the expla-
nation is one of the contributions of this paper.

We first present two designs that use the type state -> value
list -> value list, and we show the flaws in each design. We
then present our preferred design.

The incorrect but obviously attractive design Our first design
used the function type state -> value list -> value list.
As in our current design, the embedding/projection pairs built
with result and **-> were designed for pure Caml functions,
i.e., those that do not manipulate the state of a Lua interpreter.
We therefore needed a slightly different embedding function to
be produced by func: instead of the function arrow.embed f,

we used the function fun s -> arrow.embed f. Passing the
pure Caml function f to arrow.embed converts f to a function
of type value list -> value list, and wrapping this func-
tion in fun s -> ... yields a function of type state -> value
list -> value list. To embed the rare impure Caml function,
i.e., one that actually depends on a state, we provided an operation
impure func of type ’a mapf -> (state -> ’a) map.

The sticky part of this design is projecting a function. We are
given a function fl’ of type state -> value list -> value
list. To project fl’ to a Caml function that does not expect a
state, we need to apply fl’ to some state, then project the result
(which has type value list -> value list). We figured that
if we were projecting a pure function, it wouldn’t use its state, so
we could apply fl’ to an arbitrary state: for example, the empty
state. This design worked for a surprisingly long time.

The problem we overlooked occurs in the higher-order case.
Suppose we embed a function like List.map, which has type
(’a -> ’b) -> ’a list -> ’b list. List.map is pure: if
we apply it to function f and list l, it returns a new list contain-
ing the results of applying f to each element of l. But when
we embed List.map, we create a function that projects each of
List.map’s arguments from the type value to the Caml type that
List.map expects for that argument. And when we project a Lua
function fl’, things go wrong: just because List.map is pure,
there is no reason to expect its argument to be pure. We were bitten
by this bug the first time we applied a higher-order Caml function
to a function defined in Lua. The Lua function couldn’t find any
global variables; even the predefined function print was missing.
The globals were missing because our projection had applied fl’
to the empty interpreter state, which does not contain any global
variables, not even print!

The obviously correct but unattractive design An obvious
way to correct the projection problem is to pass the state to
each projection function: with each embedding function of type
’a -> ’b, we can pair a projection function of type state ->
’b -> ’a. But the mapf type becomes horrifying:

type ’a mapf = (* don’t try this at home *)
{ embedf : ’a -> (state -> value list -> value list);

projectf :
state -> (state -> value list -> value list) -> ’a

}

This design works and is correct, but the loss of symmetry is
discouraging. Passing states around requires extra bookkeeping,
which is doubly offensive because states are rarely used: in our
largest application, we embed 138 functions into the interpreter,
and only 17 of these make any use of state. (And we could cut
this number in half by making a small change in the way errors
are handled.) If we ignore Lua-library functions and consider only
application-specific functions, only 2 of 83 functions use state.
In short, the implementation is ugly.

The less obvious, correct, attractive design The type value
list -> value list leads to nice embedding/projection pairs,
and it is the type of the vast majority of our functions. But in
the general case, the type of a Lua function is state -> value
list -> value list. Instead of treating every function as an
instance of the general case, our best design treats every function
as the special case, and it resolves the mismatch by changing the
way functions are called.

When a function is called in one of the flawed designs above,
it is applied to state and arguments. But any one interpreter has a
unique, mutable state. It is therefore possible to partially apply a
function to the state at an earlier time, save the resulting closure,
and when the function is called, apply the closure only to the argu-
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strindex : int map
init : state -> unit

let strindex =
{ embed = (fun n -> int.embed (n + 1));
project = (fun v -> int.project v - 1)

}

let init interp = register_globals
["strlen", efunc (string **-> result int)

String.length;
"strlower", efunc (string **-> result string)

String.lowercase;
"strupper", efunc (string **-> result string)

String.uppercase;
"ascii",
efunc (string **-> default 0 strindex

**-> result int)
(fun s i -> Char.code (String.get s i));

"strsub",
efunc (string **-> strindex **-> option strindex

**-> result string)
(fun s start optlast ->

let maxlast = String.length s - 1 in
let last = match optlast with
| None -> maxlast
| Some n -> min n maxlast in

let len = last - start + 1 in
String.sub s start len);

... (* many more functions omitted *)
] interp

Figure 1: Example embeddings from the Lua string library

ments. The closure keeps its reference to the state throughout its
lifetime.

Exactly when to partially apply a function to the state depends
on how the function is defined.

• If a function is defined in Lua, the interpreter reads the func-
tion’s definition and builds a closure of type state -> value
list -> value list. The interpreter has access to its own
state, so it can partially apply the closure at that time.

• If a function is defined in Caml, it can’t be used until it is reg-
istered with the interpreter. Registration might involve putting
the function in a global variable, or in a table that is stored in
a global variable, or indeed in any Lua data structure—but it
always requires access to the interpreter’s state. So in the rare,
general case, a function can be partially applied to the state
at the time that it is registered. Such a function can easily be
registered with multiple interpreters, because each partial ap-
plication creates a closure that captures a different state.

Either way, once a function gets into the interpreter, it has type
value list -> value list. The state parameter, if any, is
hidden in a closure.

The benefits of this design are that the API matches the common
case, the code for embedding and projection is clean, the design
is correct, and the general case is accomodated easily. The trick
used to handle general functions can also be used to build embed-
ding/projection pairs that have access to state. For example, our
optimizing compiler can project a Lua function into an “optimiza-
tion pass,” in which case it uses the state of the interpreter to find
a name by which the function should be known.

4 Experience and discussion

We have used Lua-ML to configure and control an optimizing
compiler. The glue code for almost every application-specific
function is just a type description, as for atan2 in Section 2.4.1.
The glue code for the Lua libraries is more elaborate, because we
use the Caml libraries to implement the Lua libraries, and the se-
mantics don’t always match. For example, Figure 1 shows the
embedding of some representative functions from the Lua string
library.

Figure 1 begins with strindex, an embedding/projection pair
that embodies a programming convention for strings: Lua-strings
are 1-indexed, while Caml strings are 0-indexed. Function init
is the registration function. The first three functions registered re-
quire no glue code, because the Lua and Caml versions match ex-
actly. The fourth function, ascii, has no Caml version, but it
is easy to write, especially using default to handle the default
parameter. The last function, strsub, requires lots of glue code,
because in Caml, the third parameter is a length, but in Lua, it
is an optional position. This example is atypical and is about as
bad as it gets—a cost of choosing existing, incompatible host and
embedded languages.

Higher-order functions and types provide great flexibility to the
designer of an API for an embedded language. We have exploited
that flexibility to make embedding most functions as easy as writ-
ing their types. The main idea is that Danvy’s (1996) type-indexed
family of functions can be adapted to convert values. Making it
work requires some trickery in the embedding of functions, plus
careful handling of functions that need access to an interpreter’s
state.

These ideas don’t require much code. The parts of Lua-ML
discussed here take about 400 lines of Objective Caml; the whole
system fits in 3,400 lines. In size, Lua-ML is comparable to the
C implementation of Lua 2.5, which is about 6,000 lines.

Others have avoided writing glue code by generating it automat-
ically. For example, toLua (Celes 2003) reads a “cleaned” version
of a C header file and generates glue code for the functions de-
clared in that file. “Cleaning” must be done by hand. SWIG (Bea-
zley 1996) is more ambitious; version 1.3.16 generates glue code
for nine scripting languages. These program generators offer some
of the benefits of Lua-ML, but at much greater cost. The toLua
tool is 8,000 lines of C, and the SWIG system is about 30,000 lines
of C; its C parser alone is 4,500 lines. Eliminating glue code using
higher-order functions and types takes a fraction of this effort and
is easier for users to extend.
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A Application-specific conversion

Here is an example of C code used to convert a Lua value to and
from an application-specific host value of type Mine.

typedef struct mine *Mine;
int mine_tag;
int ismine(lua_Object o) {
return lua_isuserdata(o)

&& lua_type(o) == mine_tag;
}

Mine getmine(lua_Object o) {
assert(ismine(o));
return (Mine) lua_getuserdata(o);

}

void pushmine(Mine p) {
lua_pushusertag((void *) p, mine_tag);

}

The cast in function getmine cannot be checked by the C com-
piler, but it is safe as long as mine tag is unique. In Lua 2.5,
the uniqueness of the tag is up to the application programmer, but
Lua 4.0 contains an API function that allocates a unique tag.

B More conversion functions

This appendix presents implementations of more of the conversion
functions defined by Lua-ML.

A number may be used where a string is expected.
string : string map

let string =
{ embed = (fun s -> String s);
project =

function String s -> s
| Number x -> string_of_float x
| v -> raise (Projection (v, "string"))

}

A list of length n is represented as a table with keys 1..n.
list : ’a map -> ’a list map

let list (ty : ’a map) =
let table l = (* convert list to table *)
let n = List.length l in
let t = Table.create n in
let rec set_elems next = function

| [] -> ()
| e :: es ->

( Table.bind t (Number next) (ty.embed e);
set_elems (next +. 1.0) es )

in (set_elems 1.0 l; Table t)
in
let untable (t:table) = (* convert table to list *)
let n = Luahash.population t in
let get_i i =

Table.find t (Number (Pervasives.float i)) in
let rec elems i =

if i > n then []
else ty.project (get_i i) :: elems (i + 1) in

elems 1
in { embed = table;

project =
(function
| Table t -> untable t
| v -> raise (Projection (v, "list")))

}

We frequently allow nil to stand for the empty list, so we define a
convenience function optlist for this case.

optlist : ’a map -> ’a list map

let optlist ty = default [] (list ty)

If desired, the --> operator can be used to create a Curried Lua
function. --> : (’a map -> ’b map) -> (’a -> ’b) map

let ( --> ) arg res =
{ embed =

(fun f -> caml_func (fun args ->
[res.embed (f (arg.project (take1 args)))]))

; project =
(function
| Function (_, f) ->

(fun x ->
res.project (take1 (f [arg.embed x])))

| v -> raise (Projection (v, "function")))
}
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