Advanced Functional Programming

Software Engineering Chair and Programming Systems Lab

A Scrutiny of the Abstract

Read A Scrutiny of the Abstract by Kenneth K. Landes and provide a better
abstract of the paper. You can work in teams of two.

Presentations

We expect all participants to give a presentation about an advanced topic in
functional programming. The presentation is accompanied by a short written
presentation.

We are planning to present talks in a conference-like setting: all talks will
be given on two consecutive days. For each talk we will allocate about 35
minutes, including 10 minutes for discussion.

The tentative date for presentations is March 22nd and 23rd.

The written presentation should be an extended abstract, about 5 pages
long. We haven’t decided on a due date but it will be after the date for
giving talks.

For your grade we will weight your writing assignments (50%), your writ-
ten presentation (20%), and your talk (30%). No part must be failed
but for the writing assignments we will take only the 8 best out of 10
assignments — or a similar ratio — into account.

We will provide individual supervision for your talk and extended ab-
stract.

Material for Presentations

The papers below serve as a starting point for a presentation about an advanced
topic in functional programming.

1.

Applications: Koen Claessen and John Hughes, QuickCheck: A Lightweight
Tool for Random Testing of Haskell Programs [Christian Lindig]

. Applications: Philip Wadler, A prettier printer; Olaf Chitl, Pretty Print-

ing With Lazy Dequeues [Christian Lindig]

. Combinators: Andrew Kennedy, Pickling Combinators [Christian Lindig]

. Laziness: Jerzy Karczmarczuk, Functional Differentiation of Computer

Programs [Christian Lindig]



5. Continuations: Jacob Matthews et al., Automatically Restructuring Pro-
grams for the Web [Christian Lindig]

6. Data Structures: Martin Erwig, A Functional Graph Library [Jan Schwing-
hammer]

7. Domain-Specific Languages: P. Bjesse et al., Lava: Hardware Description
in Haskell, [Jan Schwinghammer]

8. Concurrency: Fabrice Le Fessant, Cédric Fournet, Luc Maranget, and
Alan Schmitt, JoCaml: a Language for Concurrent Distributed and Mo-
bile Programming [Jan Schwinghammer]

9. Concurrency: John Reppy, CML: A Higher-Order Concurrent Language
[Jan Schwinghammer]

10. Purity and Laziness: Simon Peyton Jones, Alastair Reid, Tony Hoare,
Simon Marlow, and Fergus Henderson, A Semantics for Imprecise Excep-
tions [Andreas Rossberg]

11. Type Classes: Simon Peyton Jones et al., Bulk types with class [Andreas
Rossberg]

12. Dependent Types: Lennart Augustsson, Cayenne - A Language with De-
pendent Types [Andreas Rossberg]

13. Dynamic Typing: Martin Abadi, Luca Cardelli, Benjamin Pierce, and
Gordon Plotkin, Dynamic Typing in a Statically Typed Language [Andreas
Rossberg]

Homework

1. Find your three favorite topics for a talk and a written presentation. You
will be given just one of these but we would like to use these to resolve
collisions with other students.

2. Read Origami Programming by Jeremy Gibbons; it appeared as a chapter
in The Fun of Programming, Jeremy Gibbons and Oege De Moor (Edi-
tors), pages 41-60, Palgrave Macmillan, 2003.

3. Summarize the paper in your own words on one page. Put your name

and student ID on your summary and drop off a printout at office 326 /45
until Monday, February 6th at noon (12am). If the door is closed, slide
your printout under the door. No Emails.



