
Advanced Functional Programming

Software Engineering Chair and Programming Systems Lab

A Scrutiny of the Abstract

Read A Scrutiny of the Abstract by Kenneth K. Landes and provide a better
abstract of the paper. You can work in teams of two.

Presentations

We expect all participants to give a presentation about an advanced topic in
functional programming. The presentation is accompanied by a short written
presentation.

• We are planning to present talks in a conference-like setting: all talks will
be given on two consecutive days. For each talk we will allocate about 35
minutes, including 10 minutes for discussion.

• The tentative date for presentations is March 22nd and 23rd.

• The written presentation should be an extended abstract, about 5 pages
long. We haven’t decided on a due date but it will be after the date for
giving talks.

• For your grade we will weight your writing assignments (50%), your writ-
ten presentation (20%), and your talk (30%). No part must be failed
but for the writing assignments we will take only the 8 best out of 10
assignments – or a similar ratio – into account.

• We will provide individual supervision for your talk and extended ab-
stract.

Material for Presentations

The papers below serve as a starting point for a presentation about an advanced
topic in functional programming.

1. Applications: Koen Claessen and John Hughes, QuickCheck: A Lightweight
Tool for Random Testing of Haskell Programs [Christian Lindig]

2. Applications: Philip Wadler, A prettier printer ; Olaf Chitl, Pretty Print-
ing With Lazy Dequeues [Christian Lindig]

3. Combinators: Andrew Kennedy, Pickling Combinators [Christian Lindig]

4. Laziness: Jerzy Karczmarczuk, Functional Differentiation of Computer
Programs [Christian Lindig]



5. Continuations: Jacob Matthews et al., Automatically Restructuring Pro-
grams for the Web [Christian Lindig]

6. Data Structures: Martin Erwig, A Functional Graph Library [Jan Schwing-
hammer]

7. Domain-Specific Languages: P. Bjesse et al., Lava: Hardware Description
in Haskell, [Jan Schwinghammer]

8. Concurrency: Fabrice Le Fessant, Cédric Fournet, Luc Maranget, and
Alan Schmitt, JoCaml: a Language for Concurrent Distributed and Mo-
bile Programming [Jan Schwinghammer]

9. Concurrency: John Reppy, CML: A Higher-Order Concurrent Language
[Jan Schwinghammer]

10. Purity and Laziness: Simon Peyton Jones, Alastair Reid, Tony Hoare,
Simon Marlow, and Fergus Henderson, A Semantics for Imprecise Excep-
tions [Andreas Rossberg]

11. Type Classes: Simon Peyton Jones et al., Bulk types with class [Andreas
Rossberg]

12. Dependent Types: Lennart Augustsson, Cayenne - A Language with De-
pendent Types [Andreas Rossberg]

13. Dynamic Typing: Martin Abadi, Luca Cardelli, Benjamin Pierce, and
Gordon Plotkin, Dynamic Typing in a Statically Typed Language [Andreas
Rossberg]

Homework

1. Find your three favorite topics for a talk and a written presentation. You
will be given just one of these but we would like to use these to resolve
collisions with other students.

2. Read Origami Programming by Jeremy Gibbons; it appeared as a chapter
in The Fun of Programming, Jeremy Gibbons and Oege De Moor (Edi-
tors), pages 41–60, Palgrave Macmillan, 2003.

3. Summarize the paper in your own words on one page. Put your name
and student ID on your summary and drop off a printout at office 326/45
until Monday, February 6th at noon (12 am). If the door is closed, slide
your printout under the door. No Emails.


