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The Menu

• How to Design a Generator

• Common Pitfalls

• ANSI X9.17

• PGP 2.x

• Applied Cryptography

• Cryptlib

• Intel Hardware
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Linear Congruential Random Number Generators (LCPRNGs).
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Designing a PRNG

We have seen in the last lecture one way how not to do it:
Linear Congruential Random Number Generators (LCPRNGs).

We will show you how to design a practically strong RNG.

A RNG is practically strong if it cannot be predicted in
practice. There might be theoretical attacks on the generator,
but if they are not also practical, they are disregarded.

An example of an attack that is theoretical but not practical is
one where a bit could be predicted with probability 0.5+ 2−128.

Remember, a generator is said to be broken if we can predict
what a bit in the generator will be with probability 0.5+ ε for
some ε > 0.
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Is This a Good Generator?

SHA

4

64

thermal
noise from

resistor

Copy

40 24
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Requirements and Limitations (1)

The generator must not use only one source of randomness:

#include <unistd.h>

extern void* pgpRandomPool;

void
sample dev random() {

int fd = open("/dev/random", O RDONLY);
char randBuf;

/* . . . */ 10

randBuf = read(fd, &randBuf, 1);
pgpRandomAddBytes(&pgpRandomPool, &randBuf, 1);
/* . . . */

}
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The generator must not use only one source of randomness:

#include <unistd.h>

extern void* pgpRandomPool;

void
sample dev random() {

int fd = open("/dev/random", O RDONLY);
char randBuf;

/* . . . */ 10

randBuf = read(fd, &randBuf, 1);
pgpRandomAddBytes(&pgpRandomPool, &randBuf, 1);
/* . . . */

}

This caused the “random” bytes to be added to consist
exclusively of ‘0x01’ bytes.
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Requirements and Limitations (2)

Here is the proposed fix:

#include <unistd.h>

extern void* pgpRandomPool;

void
sample dev random() {

int fd = open("/dev/random", O RDONLY);
char randBuf;

/* . . . */ 10

read(fd, &randBuf, 1);
pgpRandomAddBytes(&pgpRandomPool, &randBuf, 1);
/* . . . */

}

The return code from read(2) isn’t checked; therefore,
nonrandom data could be added if the read fails.
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Requirements and Limitations (3)

The generator should not use hardware-specific methods to
gather random data.

• Keystroke Timings.
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Requirements and Limitations (3)

The generator should not use hardware-specific methods to
gather random data.

• Keystroke Timings. Often virtualized interfaces that don’t
let you get at the raw keystroke data (Windows) or network
processing (remote logins);

• Some raw input methods may not exist on all operating
systems, not even on all OS types: raw input on Unix
system must be done using obscure ioctl(2) calls that aren’t
available everywhere;

• Even “direct” hardware access isn’t: keystrokes are often
processed through several processors before they arrive at
the user process.
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Requirements and Limitations (4)

Mouse events aren’t necessarily better:

• Not all mouse events are human-generated: “Snap To”
capability of some mouse drivers can position the mouse
without human intervention.

• Networked applications transmit information about mouse
events (usually in the clear), which makes the “random”
(and secret) information publicly available.

• Networked applications maight collapse multiple mouse
events into one to save bandwidth, making mouse-wiggling
less random than it should (or could) be.
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Further Requirements

• Resistant to analysis of its input data.

• Resistant to manipulation of its input data.

• Resistant to analysis of its output data.

• Resistant to attempts at state recovery.

• Make explicit any actions so that conformance of code and
design can be easily checked.

• Ensure that the internal state never leaks to the ouside
world.

• Ensure that the initial randomness is good enough to
generate good data.

• Ensure that the generator generates good numbers.
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Further Pitfalls: fork(2)

The fork(2) system call is the way in Unix to create new
processes.

The fork() call makes a copy of the currently running process
and then lets both run concurrently.

pid = fork();

parentchild

pid is
   child’s pid

pid == 0

int pid;
.
.
.

time
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Forking (2)

#include <sys/types.h>
#include <unistd.h>

void create new process() {
pid t pid;

pid = fork();
if (pid == −1) {

/* Some error has happened */
} else if (pid == 0) { 10

/* Child code */
} else {

/* Parent code */
}

}

The fork(2) system call returns twice: once in the parent and
once in the child.
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Why Is This A Problem?

When a process forks, the operating system creates an exact
copy of the parent and lets them both run concurrently (except
for different return values of fork(2)).
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Why Is This A Problem?

When a process forks, the operating system creates an exact
copy of the parent and lets them both run concurrently (except
for different return values of fork(2)).

Since the copy is exact, the random number generator state is
copied along with everything else.

If the two processes run in parallel, the RNG will presumably
generate related (if not identical) sequences of numbers.

That means that both processes will use the same
cryptovariables that are derived from the generator.

And that is bad.

This problem is also difficult to avoid.
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Problem and Attempted Solution

pool 0x12345678

fork()

pool

pool

0xabcdef12

0xabcdef12
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Problem and Attempted Solution

pool 0x12345678

fork()

pool

pool

0x1f2e3d4c

0xabcdef12

getpid()getpid()
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Problem and Attempted Solution

pool 0x12345678

fork()

pool

pool

getpid()

0xabcdef12

0xabcdef12
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Solution

1. Set oldpid ← getpid().

2. Run the generator to generate output.

3. Set newpid ← getpid(). If oldpid = newpid, we haven’t
forked in the meantime, or this is the parent. Return the
generator’s output and terminate the algorithm.

4. (At this point, oldpid 6= newpid, so we must have forked in
the meantime, and this is the child process.) Return to
step 1.

This looks somewhat like two-phase-commit (because the
technique was inspired by it).
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Message Digest Ciphers

A Message Digest Cipher turns a hash algorithm, such as MD5
or SHA, into a cipher.
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They were invented in 1992 by Peter Gutmann and first
analyzed by Stephan Neuhaus :-)
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Message Digest Ciphers

A Message Digest Cipher turns a hash algorithm, such as MD5
or SHA, into a cipher.

They were invented in 1992 by Peter Gutmann and first
analyzed by Stephan Neuhaus :-)

These ciphers are much faster than traditional block ciphers
and are ideally suited to mix large amounts of data when the
mixing process should not be reversible by an outsider.
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Recap: Hash Functions

{0,1}k is the set of all bit strings of length k; {0,1}∗ is the set
of all bit strings, including the empty string. Any message can
be viewed as a bit string by means of a suitable encoding.

Hash functions have the form h : {0,1}∗ → {0,1}k, for some
fixed k, and we call h(M) the hash of M.

A secure one-way hash function is a hash function with the
following properties:

1. For each message M, it is easy to compute h(M).

2. Given M, it is computationally infeasible to compute M′

with h(M) = h(M′) (secure against forgery).

3. It is computationally infeasible to compute M and M′ with
h(M) = h(M′) (secure against collisions).
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Incremental Hash Functions

At least some of the time, the data one wants to hash isn’t
available all at once. Therefore, most hash functions allow one
to hash incrementally.
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Incremental Hash Functions

At least some of the time, the data one wants to hash isn’t
available all at once. Therefore, most hash functions allow one
to hash incrementally.

The definition of a hash function then becomes
h : {0,1}k × {0,1}∗ → {0,1}k, and the hashing process takes a
message M, splits into chunks (M1, . . . ,Mn) and computes the
hash of M as h(h(h(. . . h(IV,M1), . . . ),Mn−1),Mn), or

h1 = h(IV,M1);
hj+1 = h(hj,Mj);
h(M) := hn.

Hash functions carry state between invocations.
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Message Digest Ciphers

Let K be an arbitrarily long key, let M = (M1, ...,Mn) be a
message, broken up into chunks of k bits, and let IV be an
initialization vector. Then set

C1 = M1 ⊕ h(IV, K)
Cj = Mj ⊕ h(Cj−1, K) for 1 < j ≤ n.

The recipient easily recovers the plaintext by

P1 = C1 ⊕ h(IV, K)
Pj = Cj ⊕ h(Cj−1, K) for 1 < j ≤ n.

This should be familiar: it’s Cipher Feedback Mode.
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A Model For RNGs

Accumulator and Preprocessing

State and Generator

Postprocessing

  

Randomness
Sources

f

f is the state-update function
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Applied Cryptography

counterRandomness Pool
+1

MD5

16
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ANSI X9.17

time Encryption 1

Encryption 2

Encryption 3
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PGP 2.x

randomness

Mix

state

64320
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Curious PGP 2.x Implementation Bug

PGP 2.x contained the following function (paraphrased):

#include <stdlib.h>

/* Exclusive-or the contents of the SRC buffer into the DST buffer. */
void xor buffers(void* dst, const void* src, size t length) {

unsigned char* dst buffer = dst;
const unsigned char* src buffer = src;

while (length−−)
*dst++ = *src++;

} 10
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PGP 2.x Implementation Fix

PGP 2.x should have contained the following function:

#include <stdlib.h>

/* Exclusive-or the contents of the SRC buffer into the DST buffer. */
void xor buffers(void* dst, const void* src, size t length) {

unsigned char* dst buffer = dst;
const unsigned char* src buffer = src;

while (length−−)
*dst++ ˆ= *src++;

} 10

Can you spot the difference?
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What’s So Curious?

A whole eight years later, GPG had the exact same bug!
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for GPG.

The GPG bug was discovered by someone reading the code out
of curiosity, not because of any form of audit happening.
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What’s So Curious?

A whole eight years later, GPG had the exact same bug!

Both PGP and GPG are open source projects.

The bug took years before it was discovered, both for PGP and
for GPG.

The GPG bug was discovered by someone reading the code out
of curiosity, not because of any form of audit happening.

In light of this, is it really true that “Many eyes make all bugs
shallow” (Eric S. Raymond)?
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PGP 2.x Mixing Function

384
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PGP 2.x Mixing Function

384

64

returned to userkept secret
(key for
next time)
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Problems With The 2.x Generator

The start-up problem: Pool bytes that are processed at the
beginning have much more influence on the mixing than bytes
at the end of the mixing process.
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beginning have much more influence on the mixing than bytes
at the end of the mixing process.

Also, the generated numbers are taken directly from the pool,
violating one of the design principles: The security rests in the
fact that it is not (easily) possible to predict the key used for
the next round of hashing.



38/71

�

�

�

�

�

�

	

Problems With The 2.x Generator

The start-up problem: Pool bytes that are processed at the
beginning have much more influence on the mixing than bytes
at the end of the mixing process.

Also, the generated numbers are taken directly from the pool,
violating one of the design principles: The security rests in the
fact that it is not (easily) possible to predict the key used for
the next round of hashing.

Thet’a very dangerous, since this key is in the same buffer as
the rest of the pool: The slightest programming error could
reveal this “secret” information, which would be a catastrophic
failure for this generator.
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Problems With The 2.x Generator

The start-up problem: Pool bytes that are processed at the
beginning have much more influence on the mixing than bytes
at the end of the mixing process.

Also, the generated numbers are taken directly from the pool,
violating one of the design principles: The security rests in the
fact that it is not (easily) possible to predict the key used for
the next round of hashing.

Thet’a very dangerous, since this key is in the same buffer as
the rest of the pool: The slightest programming error could
reveal this “secret” information, which would be a catastrophic
failure for this generator.
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/dev/random Generator

randomness

Mix

MD5

16

Preprocessing (CRC)
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/dev/random Mixing Function
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Preprocessing

16 64
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/dev/random Postprocessing

MD5

64

Preprocessing

16 64

MD5
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Intel Generator

SHA

4

64

thermal
noise from

resistor

Copy

40 24
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Critique Of The Intel Generator

It has no postprocessing.
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Critique Of The Intel Generator

It has no postprocessing.

It only has a partial state update function.

It only has a single source of entropy with no preprocessing

It runs tests at power-up (when the chip is cold), but no
continuous tests (when the chip is hot). How would you know
whether the quality of the numbers degenerates after some
time?
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cryptlib Generator

Hash 1

State

Hash 2

Randomness
Sources f
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cryptlib Mixing Function

SHA-1

The mixing function takes bytes n− 20 through n+ 63,
hashes them and replaces bits n through n+ 19 with the
result. (There is considerable overlap.)
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bit in it and mixes that using the mixing function from above.
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The mixing function copies the randomness pool, invert everys
bit in it and mixes that using the mixing function from above.

This could be a problem if the hash function used for mixing
somehow relates the outputs of SHA-1(M) and SHA-1(M).
(However, this is not very likely.)
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(However, this is not very likely.)

This output is further obfuscated by a X9.17 generator that is
frequently re-keyed (for additional security and to get FIPS 140
certification).
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Output Protection/Postprocessing

Pool data is not returned directly from the internal state.
Rather, it is protected by a mixing function.

The mixing function copies the randomness pool, invert everys
bit in it and mixes that using the mixing function from above.

This could be a problem if the hash function used for mixing
somehow relates the outputs of SHA-1(M) and SHA-1(M).
(However, this is not very likely.)

This output is further obfuscated by a X9.17 generator that is
frequently re-keyed (for additional security and to get FIPS 140
certification).

This output is then folded in half (by XORing both halves): “an
attacker doesn’t even get the triple-DES encrypted one-way
hash of a no longer existing version of the pool contents”.
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It’s one of the few generators that have been designed from a
systemic point of view (instead of a purely cryptographic point
of view).
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extra X9.17 generator and the folding-in-half, which counter
no practical (or even theoretical) threat.
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of view).

It goes to extreme lengths to protect its state.

The measures it takes are perhaps a bit too extreme, and it’s
easy to go overboard, simply adding security measures on top
of each other.

The generator would perhaps also have been OK without the
extra X9.17 generator and the folding-in-half, which counter
no practical (or even theoretical) threat.

Perhaps the author got a bit carried away; this level of
paranoia seems excessive, even for a cryptographer.
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Critique Of The cryptlib Generator

It’s one of the few generators that have been designed from a
systemic point of view (instead of a purely cryptographic point
of view).

It goes to extreme lengths to protect its state.

The measures it takes are perhaps a bit too extreme, and it’s
easy to go overboard, simply adding security measures on top
of each other.

The generator would perhaps also have been OK without the
extra X9.17 generator and the folding-in-half, which counter
no practical (or even theoretical) threat.

Perhaps the author got a bit carried away; this level of
paranoia seems excessive, even for a cryptographer. Then
again, it’s a good place to start. . .
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One example of a null hypothesis would be “the bits that
are returned by this generator are uniformly distributed”.

2. You choose a confidence level. That is a real number p
between 0 and 1 that tells the probability with which you’ll
reject the null hypothesis, even if it’s true. Typical values
for p are 0.05 and 0.01 (or 5% and 1%).
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compute the number of 0 bits in a sample of 20,000 bits.
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Tests: What Are They?

A statistical test works like this:

1. You choose a null hypothesis that you want to examine.
One example of a null hypothesis would be “the bits that
are returned by this generator are uniformly distributed”.

2. You choose a confidence level. That is a real number p
between 0 and 1 that tells the probability with which you’ll
reject the null hypothesis, even if it’s true. Typical values
for p are 0.05 and 0.01 (or 5% and 1%).

3. You run the tests and compute a statistic. For example, you
compute the number of 0 bits in a sample of 20,000 bits.

4. You compute the probability that the statistic has this value
(or is higher, or lower) if the null hypothesis is true. If this
probability is less than p, we reject the null hypothesis.
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choose the lowest p that will not cause your null hypothesis
to be rejected. Therefore, if you see a study that claims that
“the data could not be rejected at the 5% level”, you can be
sure that it could have been rejected at a 4% level.
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• If you see nonstandard levels (i.e., everything but 10%, 5%
or 1%), beware. This is a sure sign of trying to look good.
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“the data could not be rejected at the 5% level”, you can be
sure that it could have been rejected at a 4% level.
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• A null hypothesis that can only not be rejected at the 10%
level isn’t doing particularly well. Insist on 5% or better.
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More About Tests

• You never accept the null hypothesis; you only ever not
reject it.

• In practice, you’ll conduct the test first and then later
choose the lowest p that will not cause your null hypothesis
to be rejected. Therefore, if you see a study that claims that
“the data could not be rejected at the 5% level”, you can be
sure that it could have been rejected at a 4% level.

• If you see nonstandard levels (i.e., everything but 10%, 5%
or 1%), beware. This is a sure sign of trying to look good.

• A null hypothesis that can only not be rejected at the 10%
level isn’t doing particularly well. Insist on 5% or better.

• A statistical dependency is not a cause-effect chain!
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Yet More About Tests

• In general, the statistic that you compute will be some
measure of the sample’s deviation from the ideal. For
example, if you count the number k of 0 bits in a sample of
n bits, the statistic could be 0.5n− k



61/71

�

�

�

�

�

�

	

Yet More About Tests

• In general, the statistic that you compute will be some
measure of the sample’s deviation from the ideal. For
example, if you count the number k of 0 bits in a sample of
n bits, the statistic could be 0.5n− k or |0.5n− k|



61/71

�

�

�

�

�

�

	

Yet More About Tests

• In general, the statistic that you compute will be some
measure of the sample’s deviation from the ideal. For
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n bits, the statistic could be 0.5n− k or |0.5n− k| or
(0.5n− k)2
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n bits, the statistic could be 0.5n− k or |0.5n− k| or
(0.5n− k)2 or even (0.5n− k)2/0.5n (the χ2 statistic for
this case).



61/71

�

�

�

�

�

�

	

Yet More About Tests

• In general, the statistic that you compute will be some
measure of the sample’s deviation from the ideal. For
example, if you count the number k of 0 bits in a sample of
n bits, the statistic could be 0.5n− k or |0.5n− k| or
(0.5n− k)2 or even (0.5n− k)2/0.5n (the χ2 statistic for
this case).

• That means that generally, large values of the statistic
signify large deviations from the distribution that would
occur if the null hypothesis were true.
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Yet More About Tests

• In general, the statistic that you compute will be some
measure of the sample’s deviation from the ideal. For
example, if you count the number k of 0 bits in a sample of
n bits, the statistic could be 0.5n− k or |0.5n− k| or
(0.5n− k)2 or even (0.5n− k)2/0.5n (the χ2 statistic for
this case).

• That means that generally, large values of the statistic
signify large deviations from the distribution that would
occur if the null hypothesis were true.

• Therefore, most tables of statistics are computed to answer
the question, “what is the probability of the statistic being
this high, or higher, if the null hypothesis is in fact true?”
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In order to use the generated numbers with any degree of
confidence, you must test them, either beforehand or (much
better) during operation.

The National Institute of Standards (NIST) used to have in its
Federal Information Processing Standard (FIPS) 140 a number
of test procedures for random number generators, but these
have been removed in the newer version of the document.
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have been removed in the newer version of the document.

The tests that were suggested were:

• the monobit test
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confidence, you must test them, either beforehand or (much
better) during operation.

The National Institute of Standards (NIST) used to have in its
Federal Information Processing Standard (FIPS) 140 a number
of test procedures for random number generators, but these
have been removed in the newer version of the document.

The tests that were suggested were:

• the monobit test;

• the poker test
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Tests for RNGs

In order to use the generated numbers with any degree of
confidence, you must test them, either beforehand or (much
better) during operation.

The National Institute of Standards (NIST) used to have in its
Federal Information Processing Standard (FIPS) 140 a number
of test procedures for random number generators, but these
have been removed in the newer version of the document.

The tests that were suggested were:

• the monobit test;

• the poker test;

• the runs test
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Tests for RNGs

In order to use the generated numbers with any degree of
confidence, you must test them, either beforehand or (much
better) during operation.

The National Institute of Standards (NIST) used to have in its
Federal Information Processing Standard (FIPS) 140 a number
of test procedures for random number generators, but these
have been removed in the newer version of the document.

The tests that were suggested were:

• the monobit test;

• the poker test;

• the runs test; and

• the long runs test.
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The Monobit Test

“A single bit stream of 20,000 consecutive bits of
output from each RNG shall be subjected to the
following four tests: [. . . ]. Count the number of ones in
the 20,000 bit stream. Denote this quantity by X. The
test is passed if 9,725 ≤ X ≤ 10,275.”
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Where do these magic numbers (20,000, 9,725, and 10,275)
come from?
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The Monobit Test

“A single bit stream of 20,000 consecutive bits of
output from each RNG shall be subjected to the
following four tests: [. . . ]. Count the number of ones in
the 20,000 bit stream. Denote this quantity by X. The
test is passed if 9,725 ≤ X ≤ 10,275.”

Where do these magic numbers (20,000, 9,725, and 10,275)
come from?

What is the confidence level for this test?

One thing is immediately obvious: the 20,000 comes from the
desire to have a meaningful test (so that the number of bits
sampled must not be too low), that is yet practical to carry out
(so that the number of bits sampled must not be too high).
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When experiment outcomes fall naturally into K discrete
categories (such as 0 and 1 bits), the chi-square (or χ2) test is
the test of choice.
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When experiment outcomes fall naturally into K discrete
categories (such as 0 and 1 bits), the chi-square (or χ2) test is
the test of choice.

If the outcome is a real number (such as the length of a rod) or
if K is very large (such as the lifetime of a light bulb in
seconds), the χ2 test can (should) not be used.
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categories (such as 0 and 1 bits), the chi-square (or χ2) test is
the test of choice.

If the outcome is a real number (such as the length of a rod) or
if K is very large (such as the lifetime of a light bulb in
seconds), the χ2 test can (should) not be used.

We make n independent experiments and compute Yk, the
number of experiments that fell into category k (1 ≤ k ≤ K).
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The Chi-Square Test

When experiment outcomes fall naturally into K discrete
categories (such as 0 and 1 bits), the chi-square (or χ2) test is
the test of choice.

If the outcome is a real number (such as the length of a rod) or
if K is very large (such as the lifetime of a light bulb in
seconds), the χ2 test can (should) not be used.

We make n independent experiments and compute Yk, the
number of experiments that fell into category k (1 ≤ k ≤ K).

If each experiment has probability pk to end up in category k if
the null hypothesis is true, then the χ2 test computes

χ2 =
K∑
k=0

(Yk −npk)2
npk

.
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Chi-Square Distribution

What’s the probability that the χ2 statistic should be as large
as it is, or larger, if the null hypothesis is true?
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Chi-Square Distribution

What’s the probability that the χ2 statistic should be as large
as it is, or larger, if the null hypothesis is true?

Q(χ2, d) = 1− γ(d/2, χ
2/2)Γ(d/2) ,

where d is the number of degrees of freedom, which is in our
case equal to K − 1
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Chi-Square Distribution

What’s the probability that the χ2 statistic should be as large
as it is, or larger, if the null hypothesis is true?

Q(χ2, d) = 1− γ(d/2, χ
2/2)Γ(d/2) ,

where d is the number of degrees of freedom, which is in our
case equal to K − 1, and γ(a,x) and Γ(x) are the incomplete
gamma function and the gamma function defined by

γ(a,x) =
∫ x

0
e−tta−1dt for a > 0;and

Γ(x) = ∫∞
0
e−ttx−1dt for x 6= 0, −1, −2, . . . .
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Chi-Square For One Degree of Freedom
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1.0 - igamma(0.5,x/2)

(Note that gnuplot defines igamma(a,x) = γ(a,x)/Γ(a) and
calls that the incomplete gamma function.)
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What About the Monobit Test?

The monobit test is a χ2 test in disguise. We set n = 20,000
and K = 2 and call the number of 1 bits N. We have
p1 = p2 = 0.5. Then the χ2 statistic for N = 10275 (or
N = 9725) is

χ2 =
(
(n−N)−np1

)2/np1 + (N −np2)2/np2

=
(
(20,000− 10,275)− 10,000

)2

10,000
+ (10,275− 10,000)2

10,000
=
(
(10,000− 10,275)2 + (10,275− 10,000)2

)
/10,000

= 2752/5,000

= 15.125,

and Q(15.125,1) ≈ 10−4 (to nearly three significant digits).
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Okay, What About It?

That means that a deviation of more than 275 from the
expected 10,000 one bits will occur only about one time in ten
thousand in a generator whose bits are really equidistributed.
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expected 10,000 one bits will occur only about one time in ten
thousand in a generator whose bits are really equidistributed.

So the monobit test is like a χ2 test with a confidence level of
10−4.

Sounds impressive. Does this mean that this is a particularly
good test?

No, because “equidistributed” does not mean “random”. For
example, the generator that alternately outputs 0 and 1 bits
will pass this test every time, even though its output isn’t
particularly random.
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Okay, What About It?

That means that a deviation of more than 275 from the
expected 10,000 one bits will occur only about one time in ten
thousand in a generator whose bits are really equidistributed.

So the monobit test is like a χ2 test with a confidence level of
10−4.

Sounds impressive. Does this mean that this is a particularly
good test?

No, because “equidistributed” does not mean “random”. For
example, the generator that alternately outputs 0 and 1 bits
will pass this test every time, even though its output isn’t
particularly random.

Good LCPRNGs will also pass this test every time, even though
they are trivially broken.
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What Does That Mean?

That means that we cannot rely on one test alone, but must
instead run a battery of tests, just like FIPS 140 does.



69/71

�

�

�

�

�

�

	

What Does That Mean?

That means that we cannot rely on one test alone, but must
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Or (better) the DIEHARD tests by George Marsaglia (see
References).
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What Does That Mean?

That means that we cannot rely on one test alone, but must
instead run a battery of tests, just like FIPS 140 does.

Or (better) the DIEHARD tests by George Marsaglia (see
References).

We must also try to break the design of the generator,
something that no statistical test can do for us.
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