
0/41

�

�

�

�

�

�

	

Alice Who?
Authentication Protocols

Andreas Zeller/Stephan Neuhaus
Lehrstuhl Softwaretechnik
Universität des Saarlandes, Saarbrücken



1/41

�

�

�

�

�

�

	

The Menu

• Simple Authentication Protocols



1/41

�

�

�

�

�

�

	

The Menu

• Simple Authentication Protocols

• Common Pitfalls



1/41

�

�

�

�

�

�

	

The Menu

• Simple Authentication Protocols

• Common Pitfalls

• Ways to Analyze Protocols



1/41

�

�

�

�

�

�

	

The Menu

• Simple Authentication Protocols

• Common Pitfalls

• Ways to Analyze Protocols

• Login-only protocols



1/41

�

�

�

�

�

�

	

The Menu

• Simple Authentication Protocols

• Common Pitfalls

• Ways to Analyze Protocols

• Login-only protocols

• Mutual authentication



1/41

�

�

�

�

�

�

	

The Menu

• Simple Authentication Protocols

• Common Pitfalls

• Ways to Analyze Protocols

• Login-only protocols

• Mutual authentication with Key Distribution Center



1/41

�

�

�

�

�

�

	

The Menu

• Simple Authentication Protocols

• Common Pitfalls

• Ways to Analyze Protocols

• Login-only protocols

• Mutual authentication with Key Distribution Center

• Needham-Schroeder



2/41

�

�

�

�

�

�

	

Basics (1)

Authentication happens between two or more parties and is
the process of convincing another party that one party has
indeed the identity it claims to have.



2/41

�

�

�

�

�

�

	

Basics (1)

Authentication happens between two or more parties and is
the process of convincing another party that one party has
indeed the identity it claims to have.

Meet Alice and Bob:



2/41

�

�

�

�

�

�

	

Basics (1)

Authentication happens between two or more parties and is
the process of convincing another party that one party has
indeed the identity it claims to have.

Meet Alice and Bob:

Alice Bob



2/41

�

�

�

�

�

�

	

Basics (1)

Authentication happens between two or more parties and is
the process of convincing another party that one party has
indeed the identity it claims to have.

Meet Alice and Bob:

Alice Bob

Alice and Bob want to communicate, but can’t really be sure
that the other is really who he/she says he/she is.



2/41

�

�

�

�

�

�

	

Basics (1)

Authentication happens between two or more parties and is
the process of convincing another party that one party has
indeed the identity it claims to have.

Meet Alice and Bob:

Alice Bob

Alice and Bob want to communicate, but can’t really be sure
that the other is really who he/she says he/she is. So they
exchange a series of messages ⇒ a protocol.



3/41

�

�

�

�

�

�

	

Basics (2)

• May be one-sided: Alice may be a computer and Bob may
be a user. Bob logs in to Alice; Alice then knows it’s Bob,
but Bob doesn’t (in general) know it’s Alice.



3/41

�

�

�

�

�

�

	

Basics (2)

• May be one-sided: Alice may be a computer and Bob may
be a user. Bob logs in to Alice; Alice then knows it’s Bob,
but Bob doesn’t (in general) know it’s Alice.

• May be mutual: Bob logs in to Alice so that both of them
are convinced of the other’s identity afterwards.



3/41

�

�

�

�

�

�

	

Basics (2)

• May be one-sided: Alice may be a computer and Bob may
be a user. Bob logs in to Alice; Alice then knows it’s Bob,
but Bob doesn’t (in general) know it’s Alice.

• May be mutual: Bob logs in to Alice so that both of them
are convinced of the other’s identity afterwards.

• May use trusted third parties, online (Bob asks the trusted
party—Trent—to establish a conversation with Alice) or
offline (Alice could present a certificate signed by Trent).



3/41

�

�

�

�

�

�

	

Basics (2)

• May be one-sided: Alice may be a computer and Bob may
be a user. Bob logs in to Alice; Alice then knows it’s Bob,
but Bob doesn’t (in general) know it’s Alice.

• May be mutual: Bob logs in to Alice so that both of them
are convinced of the other’s identity afterwards.

• May use trusted third parties, online (Bob asks the trusted
party—Trent—to establish a conversation with Alice) or
offline (Alice could present a certificate signed by Trent).

• There might be an eavesdropper—Eve—that can listen to
and/or modify messages as they are exchanged between
Alice and Bob.



3/41

�

�

�

�

�

�

	

Basics (2)

• May be one-sided: Alice may be a computer and Bob may
be a user. Bob logs in to Alice; Alice then knows it’s Bob,
but Bob doesn’t (in general) know it’s Alice.

• May be mutual: Bob logs in to Alice so that both of them
are convinced of the other’s identity afterwards.

• May use trusted third parties, online (Bob asks the trusted
party—Trent—to establish a conversation with Alice) or
offline (Alice could present a certificate signed by Trent).

• There might be an eavesdropper—Eve—that can listen to
and/or modify messages as they are exchanged between
Alice and Bob.

• There might be an intruder—Trudy—that can listen to and
inject messages.



4/41

�

�

�

�

�

�

	

Basics (3): Protocol Notation

Alice −→ Bob : N, {M,N}K

This notation means that the principal Alice transmits to the
principal Bob a message containing a nonce N, and the
plaintext M concatenated with N, encrypted under the key K.



4/41

�

�

�

�

�

�

	

Basics (3): Protocol Notation

Alice −→ Bob : N, {M,N}K

This notation means that the principal Alice transmits to the
principal Bob a message containing a nonce N, and the
plaintext M concatenated with N, encrypted under the key K.

A nonce is anything that guarantees the freshness of a
message, such as a random number, a serial number, or a
challenge received from a third party.

We’ll usually distinguish between a principal “Bob” and the
identifying information that he sends over the wire, “Bob”.



5/41

�

�

�

�

�

�

	

Basics (4)

Alice Bob

N, {M, N}_K



5/41

�

�

�

�

�

�

	

Basics (4)

Alice Bob

N, {M, N}_K

We won’t use this often, because it’s often easier to see what
happens when using the formula notation, especially when
there are more than two parties involved.



6/41

�

�

�

�

�

�

	

The Simplest Protocol

The simplest authentication protocol has no name.



6/41

�

�

�

�

�

�

	

The Simplest Protocol

The simplest authentication protocol has no name.

Alice −→ Bob : “Hi, I’m Alice.”



6/41

�

�

�

�

�

�

	

The Simplest Protocol

The simplest authentication protocol has no name.

Alice −→ Bob : “Hi, I’m Alice.”

It can be extended into a mutual protocol:



6/41

�

�

�

�

�

�

	

The Simplest Protocol

The simplest authentication protocol has no name.

Alice −→ Bob : “Hi, I’m Alice.”

It can be extended into a mutual protocol:

Alice −→ Bob : “Hi, I’m Alice.”

Bob −→ Alice : “Hi, I’m Bob.”



6/41

�

�

�

�

�

�

	

The Simplest Protocol

The simplest authentication protocol has no name.

Alice −→ Bob : “Hi, I’m Alice.”

It can be extended into a mutual protocol:

Alice −→ Bob : “Hi, I’m Alice.”

Bob −→ Alice : “Hi, I’m Bob.”

The problem is of course that Eve can successfully pretend to
be Alice:



6/41

�

�

�

�

�

�

	

The Simplest Protocol

The simplest authentication protocol has no name.

Alice −→ Bob : “Hi, I’m Alice.”

It can be extended into a mutual protocol:

Alice −→ Bob : “Hi, I’m Alice.”

Bob −→ Alice : “Hi, I’m Bob.”

The problem is of course that Eve can successfully pretend to
be Alice:

Eve −→ Bob : “Hi, I’m Alice.”



7/41

�

�

�

�

�

�

	

Usage of this Protocol

This protocol is actually in widespread use:



7/41

�

�

�

�

�

�

	

Usage of this Protocol

This protocol is actually in widespread use:

• TCP connections are generally not authenticated. This is a
problem with mitigating factors, because if you spoof the
sender address, you usually won’t get the return packets;
also, if you are on the same Ethernet, you have to do
something about the other party’s ARP daemon. But it’s
possible.



7/41

�

�

�

�

�

�

	

Usage of this Protocol

This protocol is actually in widespread use:

• TCP connections are generally not authenticated. This is a
problem with mitigating factors, because if you spoof the
sender address, you usually won’t get the return packets;
also, if you are on the same Ethernet, you have to do
something about the other party’s ARP daemon. But it’s
possible.

• Telephone calls are usually not (properly) authenticated;
otherwise Kevin Mitnlick couldn’t have been as successful
as he was. (Remember the very first lecture in this course?)



8/41

�

�

�

�

�

�

	

Threats Against Authentication Protocols

The basic threat is always that it is possible for Trudy or Eve
eventually to impersonate Alice or Bob. They can accomplish
this for example by:



8/41

�

�

�

�

�

�

	

Threats Against Authentication Protocols

The basic threat is always that it is possible for Trudy or Eve
eventually to impersonate Alice or Bob. They can accomplish
this for example by:

• Replaying all or part of a previously recorded conversation;



8/41

�

�

�

�

�

�

	

Threats Against Authentication Protocols

The basic threat is always that it is possible for Trudy or Eve
eventually to impersonate Alice or Bob. They can accomplish
this for example by:

• Replaying all or part of a previously recorded conversation;

• Eavesdropping on a conversation and learning secrets;



8/41

�

�

�

�

�

�

	

Threats Against Authentication Protocols

The basic threat is always that it is possible for Trudy or Eve
eventually to impersonate Alice or Bob. They can accomplish
this for example by:

• Replaying all or part of a previously recorded conversation;

• Eavesdropping on a conversation and learning secrets;

• Modifying messages en route to their destination;



8/41

�

�

�

�

�

�

	

Threats Against Authentication Protocols

The basic threat is always that it is possible for Trudy or Eve
eventually to impersonate Alice or Bob. They can accomplish
this for example by:

• Replaying all or part of a previously recorded conversation;

• Eavesdropping on a conversation and learning secrets;

• Modifying messages en route to their destination;

• Modifying the message flow by inserting or deleting
messages in the network.



8/41

�

�

�

�

�

�

	

Threats Against Authentication Protocols

The basic threat is always that it is possible for Trudy or Eve
eventually to impersonate Alice or Bob. They can accomplish
this for example by:

• Replaying all or part of a previously recorded conversation;

• Eavesdropping on a conversation and learning secrets;

• Modifying messages en route to their destination;

• Modifying the message flow by inserting or deleting
messages in the network.

• Assuming another’s identity (e.g., using the other’s
network address).



8/41

�

�

�

�

�

�

	

Threats Against Authentication Protocols

The basic threat is always that it is possible for Trudy or Eve
eventually to impersonate Alice or Bob. They can accomplish
this for example by:

• Replaying all or part of a previously recorded conversation;

• Eavesdropping on a conversation and learning secrets;

• Modifying messages en route to their destination;

• Modifying the message flow by inserting or deleting
messages in the network.

• Assuming another’s identity (e.g., using the other’s
network address).

• Stealing another’s databases, to steal keys.



8/41

�

�

�

�

�

�

	

Threats Against Authentication Protocols

The basic threat is always that it is possible for Trudy or Eve
eventually to impersonate Alice or Bob. They can accomplish
this for example by:

• Replaying all or part of a previously recorded conversation;

• Eavesdropping on a conversation and learning secrets;

• Modifying messages en route to their destination;

• Modifying the message flow by inserting or deleting
messages in the network.

• Assuming another’s identity (e.g., using the other’s
network address).

• Stealing another’s databases, to steal keys.

As you can see, we’ll encounter pretty powerful adversaries.



9/41

�

�

�

�

�

�

	

But we’ll not defend against all threats. For example, we’ll
usually not defend against deleted messages (for the practical
reason that there’s not much that we can do about it).



10/41

�

�

�

�

�

�

	

Improvements

How can this protocol be improved?



10/41

�

�

�

�

�

�

	

Improvements

How can this protocol be improved?

• Alice and Bob could share a secret. Alice could present that
secret to show that she really is Alice. (Who you are is what
you know.)



10/41

�

�

�

�

�

�

	

Improvements

How can this protocol be improved?

• Alice and Bob could share a secret. Alice could present that
secret to show that she really is Alice. (Who you are is what
you know.)

• Variation: Alice claims that she knows a secret that is
unique to her. Instead of presenting the secret, Alice could
prove that she knows the secret without divulging it
(zero-knowledge-proof ).



10/41

�

�

�

�

�

�

	

Improvements

How can this protocol be improved?

• Alice and Bob could share a secret. Alice could present that
secret to show that she really is Alice. (Who you are is what
you know.)

• Variation: Alice claims that she knows a secret that is
unique to her. Instead of presenting the secret, Alice could
prove that she knows the secret without divulging it
(zero-knowledge-proof ).

• Alice could be in the posession of a unique token that she
presents to Bob. (Who you are is what you have.)



10/41

�

�

�

�

�

�

	

Improvements

How can this protocol be improved?

• Alice and Bob could share a secret. Alice could present that
secret to show that she really is Alice. (Who you are is what
you know.)

• Variation: Alice claims that she knows a secret that is
unique to her. Instead of presenting the secret, Alice could
prove that she knows the secret without divulging it
(zero-knowledge-proof ).

• Alice could be in the posession of a unique token that she
presents to Bob. (Who you are is what you have.)

• Alice could agree on submitting to a biometric scan, e.g., a
fingerprint scan or face scan. (Who you are is what you are.)



11/41

�

�

�

�

�

�

	

. . . What You Know (aka Passwords)

The protocol goes like this: Bob maintains a database of secret
passwords. Alice then authenticates herself to Bob like this:

Alice −→ Bob : “Hi, I’m Alice, and my password is ‘x&8e;pqA’.”



11/41

�

�

�

�

�

�

	

. . . What You Know (aka Passwords)

The protocol goes like this: Bob maintains a database of secret
passwords. Alice then authenticates herself to Bob like this:

Alice −→ Bob : “Hi, I’m Alice, and my password is ‘x&8e;pqA’.”

Eve can break this protocol if we assume that she can listen to
the conversation between Alice and Bob. She simply captures
the password and replays it:

Eve −→ Bob : “Hi, I’m Alice, and my password is ‘x&8e;pqA’.”



11/41

�

�

�

�

�

�

	

. . . What You Know (aka Passwords)

The protocol goes like this: Bob maintains a database of secret
passwords. Alice then authenticates herself to Bob like this:

Alice −→ Bob : “Hi, I’m Alice, and my password is ‘x&8e;pqA’.”

Eve can break this protocol if we assume that she can listen to
the conversation between Alice and Bob. She simply captures
the password and replays it:

Eve −→ Bob : “Hi, I’m Alice, and my password is ‘x&8e;pqA’.”

Note that this is independent of the guessablity of the
password.



11/41

�

�

�

�

�

�

	

. . . What You Know (aka Passwords)

The protocol goes like this: Bob maintains a database of secret
passwords. Alice then authenticates herself to Bob like this:

Alice −→ Bob : “Hi, I’m Alice, and my password is ‘x&8e;pqA’.”

Eve can break this protocol if we assume that she can listen to
the conversation between Alice and Bob. She simply captures
the password and replays it:

Eve −→ Bob : “Hi, I’m Alice, and my password is ‘x&8e;pqA’.”

Note that this is independent of the guessablity of the
password.

This attack is not always feasible, but it’s feasible enough in so
many environments that you must abstain from using this
protocol.



12/41

�

�

�

�

�

�

	

Encrypting the Exchange

Assume Alice and Bob share a secret K that can be used as a
cryptographic key.



12/41

�

�

�

�

�

�

	

Encrypting the Exchange

Assume Alice and Bob share a secret K that can be used as a
cryptographic key.

Alice −→ Bob : {“Hi, I’m Alice, and my password is ‘x&8e;pqA’.”}K



12/41

�

�

�

�

�

�

	

Encrypting the Exchange

Assume Alice and Bob share a secret K that can be used as a
cryptographic key.

Alice −→ Bob : {“Hi, I’m Alice, and my password is ‘x&8e;pqA’.”}K

That’s much better. An eavesdropper couldn’t decrypt the
message and therefore wouldn’t be able to recover the
password.



12/41

�

�

�

�

�

�

	

Encrypting the Exchange

Assume Alice and Bob share a secret K that can be used as a
cryptographic key.

Alice −→ Bob : {“Hi, I’m Alice, and my password is ‘x&8e;pqA’.”}K

That’s much better. An eavesdropper couldn’t decrypt the
message and therefore wouldn’t be able to recover the
password.

But is this really necessary?



12/41

�

�

�

�

�

�

	

Encrypting the Exchange

Assume Alice and Bob share a secret K that can be used as a
cryptographic key.

Alice −→ Bob : {“Hi, I’m Alice, and my password is ‘x&8e;pqA’.”}K

That’s much better. An eavesdropper couldn’t decrypt the
message and therefore wouldn’t be able to recover the
password.

But is this really necessary?

No, because Eve can still just capture the entire encrypted
message and replay it to Bob.



13/41

�

�

�

�

�

�

	

Challenge-Response

Alice −→ Bob : “Hi, I’m Alice.”



13/41

�

�

�

�

�

�

	

Challenge-Response

Alice −→ Bob : “Hi, I’m Alice.”

Bob −→ Alice : “Hi Alice, please encrypt 0x67f810a762df5e.”



13/41

�

�

�

�

�

�

	

Challenge-Response

Alice −→ Bob : “Hi, I’m Alice.”

Bob −→ Alice : “Hi Alice, please encrypt 0x67f810a762df5e.”

Alice −→ Bob : {0x67f810a762df5e}K



13/41

�

�

�

�

�

�

	

Challenge-Response

Alice −→ Bob : “Hi, I’m Alice.”

Bob −→ Alice : “Hi Alice, please encrypt 0x67f810a762df5e.”

Alice −→ Bob : {0x67f810a762df5e}K

Or, more formally,

Alice −→ Bob : Alice

Bob −→ Alice : R
Alice −→ Bob : {R}K,

where R is a random challenge.



14/41

�

�

�

�

�

�

	

Problems with C-R

• It’s one-sided: Bob knows about Alice, but not vice versa.



14/41

�

�

�

�

�

�

	

Problems with C-R

• It’s one-sided: Bob knows about Alice, but not vice versa.

• Somehow Bob needs to maintain a database of secrets and
keep it secure. In practice, that’s bloody difficult.



14/41

�

�

�

�

�

�

	

Problems with C-R

• It’s one-sided: Bob knows about Alice, but not vice versa.

• Somehow Bob needs to maintain a database of secrets and
keep it secure. In practice, that’s bloody difficult.

• Trudy could hijack the connection after the initial
exchange.



14/41

�

�

�

�

�

�

	

Problems with C-R

• It’s one-sided: Bob knows about Alice, but not vice versa.

• Somehow Bob needs to maintain a database of secrets and
keep it secure. In practice, that’s bloody difficult.

• Trudy could hijack the connection after the initial
exchange.

• If K is derived from a password (that only Alice needs to
know), then Eve could mount an offline password-guessing
attack.



15/41

�

�

�

�

�

�

	

Variation 1

Alice −→ Bob : Alice

Bob −→ Alice : {R}K
Alice −→ Bob : R,

where R is a random challenge.



15/41

�

�

�

�

�

�

	

Variation 1

Alice −→ Bob : Alice

Bob −→ Alice : {R}K
Alice −→ Bob : R,

where R is a random challenge.

• Requires reversible cryptography.



15/41

�

�

�

�

�

�

	

Variation 1

Alice −→ Bob : Alice

Bob −→ Alice : {R}K
Alice −→ Bob : R,

where R is a random challenge.

• Requires reversible cryptography.

• If K is derived from password, and if R is distinguishable
from random bits, Eve can mount a password-guessing
attack without snooping, by initiating the protocol as Alice.



15/41

�

�

�

�

�

�

	

Variation 1

Alice −→ Bob : Alice

Bob −→ Alice : {R}K
Alice −→ Bob : R,

where R is a random challenge.

• Requires reversible cryptography.

• If K is derived from password, and if R is distinguishable
from random bits, Eve can mount a password-guessing
attack without snooping, by initiating the protocol as Alice.

• Authentication is mutual if R is a recognizable quantity
with a limited lifetime.



16/41

�

�

�

�

�

�

	

Variation 2

Alice −→ Bob : Alice, {t}K,

where t is a timestamp.



16/41

�

�

�

�

�

�

	

Variation 2

Alice −→ Bob : Alice, {t}K,

where t is a timestamp.

• One-sided (Bob authenticates Alice, not vice versa).



16/41

�

�

�

�

�

�

	

Variation 2

Alice −→ Bob : Alice, {t}K,

where t is a timestamp.

• One-sided (Bob authenticates Alice, not vice versa).

• Requires clocks to be reasonably synchronized.



16/41

�

�

�

�

�

�

	

Variation 2

Alice −→ Bob : Alice, {t}K,

where t is a timestamp.

• One-sided (Bob authenticates Alice, not vice versa).

• Requires clocks to be reasonably synchronized.

• When using the same secret K for multiple servers, Eve can
impersonate Alice at the other servers (if she’s fast
enough).



16/41

�

�

�

�

�

�

	

Variation 2

Alice −→ Bob : Alice, {t}K,

where t is a timestamp.

• One-sided (Bob authenticates Alice, not vice versa).

• Requires clocks to be reasonably synchronized.

• When using the same secret K for multiple servers, Eve can
impersonate Alice at the other servers (if she’s fast
enough).

• Replay possible if Eve can cause Bob’s clock to be turned
back.



16/41

�

�

�

�

�

�

	

Variation 2

Alice −→ Bob : Alice, {t}K,

where t is a timestamp.

• One-sided (Bob authenticates Alice, not vice versa).

• Requires clocks to be reasonably synchronized.

• When using the same secret K for multiple servers, Eve can
impersonate Alice at the other servers (if she’s fast
enough).

• Replay possible if Eve can cause Bob’s clock to be turned
back.

• Time setting and login are now coupled.



17/41

�

�

�

�

�

�

	

Mutual Authentication

Alice −→ Bob : Alice

Bob −→ Alice : R1

Alice −→ Bob : {R1}K, R2



17/41

�

�

�

�

�

�

	

Mutual Authentication

Alice −→ Bob : Alice

Bob −→ Alice : R1

Alice −→ Bob : {R1}K, R2

Bob −→ Alice : {R2}K



18/41

�

�

�

�

�

�

	

Mutual Authentication “Optimized”

We attempt to optimize this protocol:

Alice −→ Bob : Alice, R2

Bob −→ Alice : {R2}K, R1

Alice −→ Bob : {R1}K



18/41

�

�

�

�

�

�

	

Mutual Authentication “Optimized”

We attempt to optimize this protocol:

Alice −→ Bob : Alice, R2

Bob −→ Alice : {R2}K, R1

Alice −→ Bob : {R1}K

We eliminated 25% of all messages. Not bad!



18/41

�

�

�

�

�

�

	

Mutual Authentication “Optimized”

We attempt to optimize this protocol:

Alice −→ Bob : Alice, R2

Bob −→ Alice : {R2}K, R1

Alice −→ Bob : {R1}K

We eliminated 25% of all messages. Not bad!

What’s wrong with this protocol?



19/41

�

�

�

�

�

�

	

Reflection Attack

This protocol suffers from a reflection attack:

Trudy −→ Bob : Alice, R2

Bob −→ Trudy : {R2}K, R1



19/41

�

�

�

�

�

�

	

Reflection Attack

This protocol suffers from a reflection attack:

Trudy −→ Bob : Alice, R2

Bob −→ Trudy : {R2}K, R1

Trudy −→ Bob : Alice, R1



19/41

�

�

�

�

�

�

	

Reflection Attack

This protocol suffers from a reflection attack:

Trudy −→ Bob : Alice, R2

Bob −→ Trudy : {R2}K, R1

Trudy −→ Bob : Alice, R1

Bob −→ Trudy : {R1}K, R3



19/41

�

�

�

�

�

�

	

Reflection Attack

This protocol suffers from a reflection attack:

Trudy −→ Bob : Alice, R2

Bob −→ Trudy : {R2}K, R1

Trudy −→ Bob : Alice, R1

Bob −→ Trudy : {R1}K, R3

Trudy −→ Bob : {R1}K



20/41

�

�

�

�

�

�

	

Rules

• Don’t use the same key K for Alice and Bob. Instead, use
K + 1, K ⊕ 0x0F0F0F0F, ¬K, or something like this.



20/41

�

�

�

�

�

�

	

Rules

• Don’t use the same key K for Alice and Bob. Instead, use
K + 1, K ⊕ 0x0F0F0F0F, ¬K, or something like this.

• Different challenges. Either remember past challenges and
decline to encrypt known challenges, or insist that the
challenges must be different for Alice and Bob (see
exercises).



20/41

�

�

�

�

�

�

	

Rules

• Don’t use the same key K for Alice and Bob. Instead, use
K + 1, K ⊕ 0x0F0F0F0F, ¬K, or something like this.

• Different challenges. Either remember past challenges and
decline to encrypt known challenges, or insist that the
challenges must be different for Alice and Bob (see
exercises).

• Let the initiator of a protocol be the first to prove his
identity.



21/41

�

�

�

�

�

�

	

Authentication With Public Key

Alice −→ Bob : Alice

Bob −→ Alice : R
Alice −→ Bob : [R]Alice



21/41

�

�

�

�

�

�

	

Authentication With Public Key

Alice −→ Bob : Alice

Bob −→ Alice : R
Alice −→ Bob : [R]Alice

• Bob’s database doesn’t contain secrets anymore ⇒ need
not be protected against theft.



21/41

�

�

�

�

�

�

	

Authentication With Public Key

Alice −→ Bob : Alice

Bob −→ Alice : R
Alice −→ Bob : [R]Alice

• Bob’s database doesn’t contain secrets anymore ⇒ need
not be protected against theft.

• Database must still be protected against modification
(much easier).



22/41

�

�

�

�

�

�

	

Variation and Criticism (1)

Alice −→ Bob : Alice

Bob −→ Alice : {R}Alice

Alice −→ Bob : R



22/41

�

�

�

�

�

�

	

Variation and Criticism (1)

Alice −→ Bob : Alice

Bob −→ Alice : {R}Alice

Alice −→ Bob : R

• Needs encryption in addition to signature.



22/41

�

�

�

�

�

�

	

Variation and Criticism (1)

Alice −→ Bob : Alice

Bob −→ Alice : {R}Alice

Alice −→ Bob : R

• Needs encryption in addition to signature.

• Both protocols have the flaw that if Eve can impersonate
Bob, she can get arbitrary values signed (or encrypted).



22/41

�

�

�

�

�

�

	

Variation and Criticism (1)

Alice −→ Bob : Alice

Bob −→ Alice : {R}Alice

Alice −→ Bob : R

• Needs encryption in addition to signature.

• Both protocols have the flaw that if Eve can impersonate
Bob, she can get arbitrary values signed (or encrypted).

• This is a serious flaw if the Alice’s key pair is used for
things other than authentication (e.g., for signing bank
transfers).



23/41

�

�

�

�

�

�

	

Criticism (2)

This problem can be solved if we stipulate that

• keys are never reused for different applications; or



23/41

�

�

�

�

�

�

	

Criticism (2)

This problem can be solved if we stipulate that

• keys are never reused for different applications; or

• the system is coordinated that it’s not possible to use one
protocol to break another (for example by formatting the R
values differently for different applications).



23/41

�

�

�

�

�

�

	

Criticism (2)

This problem can be solved if we stipulate that

• keys are never reused for different applications; or

• the system is coordinated that it’s not possible to use one
protocol to break another (for example by formatting the R
values differently for different applications).

Also note what this means:



23/41

�

�

�

�

�

�

	

Criticism (2)

This problem can be solved if we stipulate that

• keys are never reused for different applications; or

• the system is coordinated that it’s not possible to use one
protocol to break another (for example by formatting the R
values differently for different applications).

Also note what this means:

By combining two protocols that are secure in themselves,
you get a system that is not secure at all; and you can

design protocols whose deployment threatens the security
of a system that is already in place!



23/41

�

�

�

�

�

�

	

Criticism (2)

This problem can be solved if we stipulate that

• keys are never reused for different applications; or

• the system is coordinated that it’s not possible to use one
protocol to break another (for example by formatting the R
values differently for different applications).

Also note what this means:

By combining two protocols that are secure in themselves,
you get a system that is not secure at all; and you can

design protocols whose deployment threatens the security
of a system that is already in place!

For people who like to sound clever, we can also say that
security isn’t closed under composition.



24/41

�

�

�

�

�

�

	

Mutual Authentication With Public Key

Alice −→ Bob : Alice, {R2}Bob

Bob −→ Alice : R2, {R1}Alice

Alice −→ Bob : R1



24/41

�

�

�

�

�

�

	

Mutual Authentication With Public Key

Alice −→ Bob : Alice, {R2}Bob

Bob −→ Alice : R2, {R1}Alice

Alice −→ Bob : R1

In an obvious variation, Alice could send R2 and Bob could
return [R2]Bob; Bob would then send R1 and Alice would return
[R1]Alice.

Here the obvious problem is, how do Alice and Bob obtain the
other’s public key?



24/41

�

�

�

�

�

�

	

Mutual Authentication With Public Key

Alice −→ Bob : Alice, {R2}Bob

Bob −→ Alice : R2, {R1}Alice

Alice −→ Bob : R1

In an obvious variation, Alice could send R2 and Bob could
return [R2]Bob; Bob would then send R1 and Alice would return
[R1]Alice.

Here the obvious problem is, how do Alice and Bob obtain the
other’s public key?

• With a Key Distribution Center (KDC);



24/41

�

�

�

�

�

�

	

Mutual Authentication With Public Key

Alice −→ Bob : Alice, {R2}Bob

Bob −→ Alice : R2, {R1}Alice

Alice −→ Bob : R1

In an obvious variation, Alice could send R2 and Bob could
return [R2]Bob; Bob would then send R1 and Alice would return
[R1]Alice.

Here the obvious problem is, how do Alice and Bob obtain the
other’s public key?

• With a Key Distribution Center (KDC);

• With Public Key Infrastructure (PKI)



25/41

�

�

�

�

�

�

	

How Does Alice Obtain Her Private Key?

Assume Alice is sitting at her workstation. Can we really make
her type in a 512-bit RSA private key?



25/41

�

�

�

�

�

�

	

How Does Alice Obtain Her Private Key?

Assume Alice is sitting at her workstation. Can we really make
her type in a 512-bit RSA private key?

• She can carry her key with her on a USB stick or other
portable device.



25/41

�

�

�

�

�

�

	

How Does Alice Obtain Her Private Key?

Assume Alice is sitting at her workstation. Can we really make
her type in a 512-bit RSA private key?

• She can carry her key with her on a USB stick or other
portable device.

• She can obtain an encrypted version of her key from a KDC
(or even from Bob) and decrypt it using a password.



25/41

�

�

�

�

�

�

	

How Does Alice Obtain Her Private Key?

Assume Alice is sitting at her workstation. Can we really make
her type in a 512-bit RSA private key?

• She can carry her key with her on a USB stick or other
portable device.

• She can obtain an encrypted version of her key from a KDC
(or even from Bob) and decrypt it using a password.

At the same place, one can store information that would
enable Alice to learn Bob’s public key:



25/41

�

�

�

�

�

�

	

How Does Alice Obtain Her Private Key?

Assume Alice is sitting at her workstation. Can we really make
her type in a 512-bit RSA private key?

• She can carry her key with her on a USB stick or other
portable device.

• She can obtain an encrypted version of her key from a KDC
(or even from Bob) and decrypt it using a password.

At the same place, one can store information that would
enable Alice to learn Bob’s public key:

• Encrypted with a key derived from Alice’s password;



25/41

�

�

�

�

�

�

	

How Does Alice Obtain Her Private Key?

Assume Alice is sitting at her workstation. Can we really make
her type in a 512-bit RSA private key?

• She can carry her key with her on a USB stick or other
portable device.

• She can obtain an encrypted version of her key from a KDC
(or even from Bob) and decrypt it using a password.

At the same place, one can store information that would
enable Alice to learn Bob’s public key:

• Encrypted with a key derived from Alice’s password;

• Signed with Alice’s private key.



26/41

�

�

�

�

�

�

	

Mediated Authentication

Mediated authentication happend when Alice first asks a
trusted intermediary, Trent, to introduce her to Bob.



26/41

�

�

�

�

�

�

	

Mediated Authentication

Mediated authentication happend when Alice first asks a
trusted intermediary, Trent, to introduce her to Bob.

Because Trent is trusted by both Alice and Bob, authentication
is mutual.



26/41

�

�

�

�

�

�

	

Mediated Authentication

Mediated authentication happend when Alice first asks a
trusted intermediary, Trent, to introduce her to Bob.

Because Trent is trusted by both Alice and Bob, authentication
is mutual.

Does not need public key cryptography!



26/41

�

�

�

�

�

�

	

Mediated Authentication

Mediated authentication happend when Alice first asks a
trusted intermediary, Trent, to introduce her to Bob.

Because Trent is trusted by both Alice and Bob, authentication
is mutual.

Does not need public key cryptography!

Alice −→ Trent : Alice wants Bob

Trent : Invents KAB
Trent −→ Alice : {Use KAB for Bob}Alice

Trent −→ Bob : {Use KAB for Alice}Bob



26/41

�

�

�

�

�

�

	

Mediated Authentication

Mediated authentication happend when Alice first asks a
trusted intermediary, Trent, to introduce her to Bob.

Because Trent is trusted by both Alice and Bob, authentication
is mutual.

Does not need public key cryptography!

Alice −→ Trent : Alice wants Bob

Trent : Invents KAB
Trent −→ Alice : {Use KAB for Bob}Alice

Trent −→ Bob : {Use KAB for Alice}Bob

After this exchange, Alice and Bob can (must) authenticate
themselves.



27/41

�

�

�

�

�

�

	

Mediated Authentication in Practice

In practice, it’s impractical to use the protocol like this:

• Alice’s first message to Bob (encrypted with KAB) might
arrive at Bob before Trent’s message that contains KAB.



27/41

�

�

�

�

�

�

	

Mediated Authentication in Practice

In practice, it’s impractical to use the protocol like this:

• Alice’s first message to Bob (encrypted with KAB) might
arrive at Bob before Trent’s message that contains KAB.

• It’s impractical for Trent to open a connection to Bob.



27/41

�

�

�

�

�

�

	

Mediated Authentication in Practice

In practice, it’s impractical to use the protocol like this:

• Alice’s first message to Bob (encrypted with KAB) might
arrive at Bob before Trent’s message that contains KAB.

• It’s impractical for Trent to open a connection to Bob.

Therefore, Trent will in general return to Alice not only
{Use KAB for Bob}Alice, but also t = {Use KAB for Alice}Bob,
which is called a ticket.



27/41

�

�

�

�

�

�

	

Mediated Authentication in Practice

In practice, it’s impractical to use the protocol like this:

• Alice’s first message to Bob (encrypted with KAB) might
arrive at Bob before Trent’s message that contains KAB.

• It’s impractical for Trent to open a connection to Bob.

Therefore, Trent will in general return to Alice not only
{Use KAB for Bob}Alice, but also t = {Use KAB for Alice}Bob,
which is called a ticket.

Alice will then present t when she initiates a connection to Bob.



27/41

�

�

�

�

�

�

	

Mediated Authentication in Practice

In practice, it’s impractical to use the protocol like this:

• Alice’s first message to Bob (encrypted with KAB) might
arrive at Bob before Trent’s message that contains KAB.

• It’s impractical for Trent to open a connection to Bob.

Therefore, Trent will in general return to Alice not only
{Use KAB for Bob}Alice, but also t = {Use KAB for Alice}Bob,
which is called a ticket.

Alice will then present t when she initiates a connection to Bob.

Both will then have to complete a mutual authentication.



28/41

�

�

�

�

�

�

	

Needham-Schroeder (1)

• It’s a classic mediated authentication protocol with mutual
authentication.



28/41

�

�

�

�

�

�

	

Needham-Schroeder (1)

• It’s a classic mediated authentication protocol with mutual
authentication.

• It’s been a model for many other protocols.



28/41

�

�

�

�

�

�

	

Needham-Schroeder (1)

• It’s a classic mediated authentication protocol with mutual
authentication.

• It’s been a model for many other protocols.

• It’s used in Kerberos



28/41

�

�

�

�

�

�

	

Needham-Schroeder (1)

• It’s a classic mediated authentication protocol with mutual
authentication.

• It’s been a model for many other protocols.

• It’s used in Kerberos and Kerberos is used in Active
Directory



28/41

�

�

�

�

�

�

	

Needham-Schroeder (1)

• It’s a classic mediated authentication protocol with mutual
authentication.

• It’s been a model for many other protocols.

• It’s used in Kerberos and Kerberos is used in Active
Directory =⇒ huge installed base.



28/41

�

�

�

�

�

�

	

Needham-Schroeder (1)

• It’s a classic mediated authentication protocol with mutual
authentication.

• It’s been a model for many other protocols.

• It’s used in Kerberos and Kerberos is used in Active
Directory =⇒ huge installed base.

• We’ll analyze this protocol in some detail in order to
understand its strengths and weaknesses.



29/41

�

�

�

�

�

�

	

Needham-Schroeder (2)

Alice −→ Trent : N1,Alice wants Bob

Trent : Invents KAB
Trent −→ Alice : {N1,Bob, KAB, {KAB,Alice}Bob}Alice

Alice : Verifies N1, extracts KAB and ticket

Alice −→ Bob : {KAB,Alice}Bob, {N2}AB
Bob : Extracts KAB from ticket

Bob −→ Alice : {N2 − 1, N3}AB
Alice −→ Bob : {N3 − 1}AB

where {KAB,Alice}Bob is Trent’s ticket for Alice’s conversation
with Bob and the Ni are nonces, i.e., quantities used only once.



30/41

�

�

�

�

�

�

	

Analysis of Needham-Schroeder (1)

Why the Nonce in the first message?



30/41

�

�

�

�

�

�

	

Analysis of Needham-Schroeder (1)

Why the Nonce in the first message?

Otherwise, the protocol could be susceptibe to a replay attack.
Assume that Eve has captured a previous exchange of this
modified Needham-Schroeder protocol and has, by some
effort, broken KAB:



30/41

�

�

�

�

�

�

	

Analysis of Needham-Schroeder (1)

Why the Nonce in the first message?

Otherwise, the protocol could be susceptibe to a replay attack.
Assume that Eve has captured a previous exchange of this
modified Needham-Schroeder protocol and has, by some
effort, broken KAB:

Alice −→ Eve : Alice wants Bob

Eve −→ Alice : {Bob, KAB, {KAB,Alice}Bob}Alice

and Eve will now be able to decrypt the conversation between
Alice and Bob.



30/41

�

�

�

�

�

�

	

Analysis of Needham-Schroeder (1)

Why the Nonce in the first message?

Otherwise, the protocol could be susceptibe to a replay attack.
Assume that Eve has captured a previous exchange of this
modified Needham-Schroeder protocol and has, by some
effort, broken KAB:

Alice −→ Eve : Alice wants Bob

Eve −→ Alice : {Bob, KAB, {KAB,Alice}Bob}Alice

and Eve will now be able to decrypt the conversation between
Alice and Bob. This can’t happen with N1 used in the first step,
because Eve can’t encrypt N1.



31/41

�

�

�

�

�

�

	

Analysis of Needham-Schroeder (2)

Why is Bob in the message from the KDC to Alice?



31/41

�

�

�

�

�

�

	

Analysis of Needham-Schroeder (2)

Why is Bob in the message from the KDC to Alice?

To make it impossible for Trudy to substitute her own name
for Bob’s:



31/41

�

�

�

�

�

�

	

Analysis of Needham-Schroeder (2)

Why is Bob in the message from the KDC to Alice?

To make it impossible for Trudy to substitute her own name
for Bob’s:

Alice −→ Trudy : Alice wants Bob

Trudy : Intercepts and changes the message

Trudy −→ Trent : Alice wants Trudy

Trent −→ Trudy : {KAB, {KAB}Trudy}Alice

Trudy −→ Alice : {KAB, {KAB}Trudy}Alice

Trudy : Impersonates Bob



32/41

�

�

�

�

�

�

	

Nonces

As we have said, a nonce is a number used only once.



32/41

�

�

�

�

�

�

	

Nonces

As we have said, a nonce is a number used only once.

It is possible to introduce weaknesses into protocols if the
nonces have the wrong properties.



32/41

�

�

�

�

�

�

	

Nonces

As we have said, a nonce is a number used only once.

It is possible to introduce weaknesses into protocols if the
nonces have the wrong properties.

Nonce types are:

• a timestamp;



32/41

�

�

�

�

�

�

	

Nonces

As we have said, a nonce is a number used only once.

It is possible to introduce weaknesses into protocols if the
nonces have the wrong properties.

Nonce types are:

• a timestamp;

• a sequence number;



32/41

�

�

�

�

�

�

	

Nonces

As we have said, a nonce is a number used only once.

It is possible to introduce weaknesses into protocols if the
nonces have the wrong properties.

Nonce types are:

• a timestamp;

• a sequence number; and

• a large random number.



33/41

�

�

�

�

�

�

	

Large Random Numbers as Nonces (1)

Why can we use a random number as a nonce when there is a
chance that it would be reused?



33/41

�

�

�

�

�

�

	

Large Random Numbers as Nonces (1)

Why can we use a random number as a nonce when there is a
chance that it would be reused?

Back-of-envelope-calculation: Assume n-bit random numbers;
there are N = 2n of them. The probability that k independent
draws out of N numbers yield all different numbers is
N(N − 1) · · · (n− k+ 1)/Nk.

The relative difference between N and N − k+ 1 is
δ = (k− 1)/N. (I.e., N − k+ 1 = (1− δ)N.) Let’s assume we
generate a 128-bit nonce every millisecond for 1000 years.
That will be 1000 · 366 · 24 · 3600 · 1000 = 31622400000000
or about 245 nonces. With N = 2128 and k = 245, we have
δ ≈ 245/2128 = 2−83.



34/41

�

�

�

�

�

�

	

Large Random Numbers as Nonces (2)

N − k+ 1 ≈ (1− 2−83)N; therefore

N(N − 1) · · · (N − k+ 1)/Nk ≥ (N − k+ 1)k/Nk

≈ (1− 2−83)kNk/Nk

≈ (1− 2−83)k

≈ 1− k · 2−83

≈ 1− 245 · 2−83

= 1− 2−38.

Therefore, it is practically certain that all nonces are different.
(2−38 ≈ 3.6 · 10−12.)



35/41

�

�

�

�

�

�

	

Timestamps and Sequence Numbers

• Timestamps require synchronized clocks.



35/41

�

�

�

�

�

�

	

Timestamps and Sequence Numbers

• Timestamps require synchronized clocks.

• A sequence number requires that at least one party
remembers the last sequence number it has handed out



35/41

�

�

�

�

�

�

	

Timestamps and Sequence Numbers

• Timestamps require synchronized clocks.

• A sequence number requires that at least one party
remembers the last sequence number it has handed out.

Alice −→ Bob : Alice

Bob −→ Alice : {R}AB
Alice −→ Bob : R



36/41

�

�

�

�

�

�

	

Breaking The Protocol

If Bob used sequence numbers, Eve could listen in to only one
exchange between Alice and Bob. Then she would know the
current value of R and could impersonate Alice:

Eve −→ Bob : Alice

Bob −→ Eve : {R + 1}AB
Eve −→ Bob : R + 1

Eve can answer “R+1” in step 3, even though she can’t decrypt
{R + 1}AB, because she can predict what the challenge will be.



37/41

�

�

�

�

�

�

	

Random Numbers

If you use random numbers for nonces, be sure to pick good
ones. We’ve had two lectures on how to do that, so we won’t
talk about that any further.



38/41

�

�

�

�

�

�

	

Performance

In order to evaluate a protocol’s performance, the following
factors must be checked:



38/41

�

�

�

�

�

�

	

Performance

In order to evaluate a protocol’s performance, the following
factors must be checked:

• Number of signatures



38/41

�

�

�

�

�

�

	

Performance

In order to evaluate a protocol’s performance, the following
factors must be checked:

• Number of signatures

• Number of public-key encryptions



38/41

�

�

�

�

�

�

	

Performance

In order to evaluate a protocol’s performance, the following
factors must be checked:

• Number of signatures

• Number of public-key encryptions

• Number of bytes encrypted with a secret key



38/41

�

�

�

�

�

�

	

Performance

In order to evaluate a protocol’s performance, the following
factors must be checked:

• Number of signatures

• Number of public-key encryptions

• Number of bytes encrypted with a secret key

• Number of bytes to be hashed



38/41

�

�

�

�

�

�

	

Performance

In order to evaluate a protocol’s performance, the following
factors must be checked:

• Number of signatures

• Number of public-key encryptions

• Number of bytes encrypted with a secret key

• Number of bytes to be hashed

• Number and size of messages transmitted



38/41

�

�

�

�

�

�

	

Performance

In order to evaluate a protocol’s performance, the following
factors must be checked:

• Number of signatures

• Number of public-key encryptions

• Number of bytes encrypted with a secret key

• Number of bytes to be hashed

• Number and size of messages transmitted

• Number of connection buildups and teardowns



39/41

�

�

�

�

�

�

	

Checklist

A checklist can be found in Charlie Kaufman, Radia Perlman,
Mike Speciner, Network Security, Prentice-Hall. (The second
edition has the list on p. 285f.)



40/41

�

�

�

�

�

�

	

Summary

• Simple Authentication Protocols



40/41

�

�

�

�

�

�

	

Summary

• Simple Authentication Protocols

• Common Pitfalls



40/41

�

�

�

�

�

�

	

Summary

• Simple Authentication Protocols

• Common Pitfalls

• Ways to Analyze Protocols



40/41

�

�

�

�

�

�

	

Summary

• Simple Authentication Protocols

• Common Pitfalls

• Ways to Analyze Protocols

• Login-only protocols



40/41

�

�

�

�

�

�

	

Summary

• Simple Authentication Protocols

• Common Pitfalls

• Ways to Analyze Protocols

• Login-only protocols

• Mutual authentication



40/41

�

�

�

�

�

�

	

Summary

• Simple Authentication Protocols

• Common Pitfalls

• Ways to Analyze Protocols

• Login-only protocols

• Mutual authentication with Key Distribution Center



40/41

�

�

�

�

�

�

	

Summary

• Simple Authentication Protocols

• Common Pitfalls

• Ways to Analyze Protocols

• Login-only protocols

• Mutual authentication with Key Distribution Center

• Needham-Schroeder



41/41

�

�

�

�

�

�

	

Resources

• Ross Anderson, Security Engineering, John Wiley & Sons



41/41

�

�

�

�

�

�

	

Resources

• Ross Anderson, Security Engineering, John Wiley & Sons

• Bruce Schneier, Applied Cryptography, John Wiley & Sons



41/41

�

�

�

�

�

�

	

Resources

• Ross Anderson, Security Engineering, John Wiley & Sons

• Bruce Schneier, Applied Cryptography, John Wiley & Sons

• Charlie Kaufman, Radia Perlman, Mike Speciner, Network
Security, Prentice-Hall


	The Menu
	Basics (1)
	Basics (2)
	Basics (3): Protocol Notation
	Basics (4)
	The Simplest Protocol
	Usage of this Protocol
	Threats Against Authentication Protocols
	Improvements
	…What You Know (aka Passwords)
	Encrypting the Exchange
	Challenge-Response
	Problems with C-R
	Variation 1
	Variation 2
	Mutual Authentication
	Mutual Authentication ``Optimized''
	Reflection Attack
	Rules
	Authentication With Public Key
	Variation and Criticism (1)
	Criticism (2)
	Mutual Authentication With Public Key
	How Does Alice Obtain Her Private Key?
	Mediated Authentication
	Mediated Authentication in Practice
	Needham-Schroeder (1)
	Needham-Schroeder (2)
	Analysis of Needham-Schroeder (1)
	Analysis of Needham-Schroeder (2)
	Nonces
	Large Random Numbers as Nonces (1)
	Large Random Numbers as Nonces (2)
	Timestamps and Sequence Numbers
	Breaking The Protocol
	Random Numbers
	Performance
	Checklist
	Summary
	Resources

