
Programming for Engineers 
Winter 2015

Andreas Zeller, Saarland University

Testing and Debugging

The Problem

2

Alan Turing

1912–1954

1936 schließlich führte Turing die Begriffe des
Algorithmus und der Berechenbarkeit fassbar, indem er
mit seinem Modell die Begriffe des Algorithmus und
der Berechenbarkeit als formale, mathematische
Begriffe definierte.

Halting Problem

• Not all problems can be solved by programs

• E.g. the halting problem states that there is
no program which can decide for an
arbitrary program P, whether it will
(eventually) return a result or not.

Collatz Conjecture 
(Lothar Collatz, 1937)

• Start with an integer n

• If n is even, take n/2 next

• If n is odd, take 3n+1next

• repeat

19, 58, 29, 88, 44, 22, 11, 34, 17, 52, 26,
13, 40, 20, 10, 5, 16, 8, 4, 2, 1, …

Collatz Conjecture 
(Lothar Collatz, 1937)

• Apparently every sequence defined in this
manner ends in 4, 2, 1, …

• This property remains unproven

19, 58, 29, 88, 44, 22, 11, 34, 17, 52, 26,
13, 40, 20, 10, 5, 16, 8, 4, 2, 1, …

19, 58, 29, 88, 44, 22, 11, 34, 17, 52, 26,
13, 40, 20, 10, 5, 16, 8, 4, 2, 1, …

Halting Problem

• Will collatz() return
for every n?

• Solution only by trial 
(in infinite time)

void collatz(int n) {
 while (n != 1) {
 if (n % 2 == 0)
 n = n / 2;
 else
 n = 3 * n + 1;
 }
}

It is impossible to show correctness
automatically for all programs

Halting Problem

To show that a real program fulfils its
requirements, we must either

• use mathematical knowledge and
assumptions to prove it by hand (which is
very hard), or

• we must test it and hope that our tests
suffice.

Testing

Testing
Edgar Degas: The Rehearsal. With
a rehearsal, we want to check
whether everything will work as
expected. This is a test.

More Testing
Again, a test. We test whether we
can evacuate 500 people from an
Airbus A380 in 90 seconds. This is
a test.

Even More Testing
And: We test whether a concrete
wall (say, for a nuclear reactor)
withstands a plane crash at 900
km/h. Indeed, it does.

Software is Diverse
We can also test software this way.
But software is not a planned linear
show – it has a multitude of
possibilities. So: if it works once,
will it work again? This is the
central issue of testing – and of
any verification method.

Software is Diverse
We can also test software this way.
But software is not a planned linear
show – it has a multitude of
possibilities. So: if it works once,
will it work again? This is the
central issue of testing – and of
any verification method.

Software is Diverse
The problem is: There are many
possible executions. And as the
number grows…

Software is Diverse
and grows…

Software is Diverse
and grows…

Software is Diverse
and grows…

Testing

Configurations

…you get an infinite number of
possible executions, but you can
only conduct a finite number of
tests.

Testing

Configurations

With testing, you pick a few of
these Konfigurationens – and test
them.

Manual Testing

• Manual testing is easy:

• We execute the program

• We examine whether it mets our
expectations

• Must be repeated after every change!

Automatic Testing
• A special test function checks another

function for correctness:

void test_sqrt() {
 if (sqrt(4) != 2)
 error();
 if (sqrt(9) != 3)
 error();
 if (sqrt(16) != 4)
 error();
}

• After every change: 
simply re-execute the tests

Assertions
• In order to ensure a condition, programs

use assertions

• assert(p) fails if p does not hold

#include <assert.h>

void test_sqrt() {
 assert(sqrt(4) == 2);
 assert(sqrt(9) == 3);
 assert(sqrt(16) == 4);
}

Diagnosis

• Usually assert(p) halts the program directly
(“abort()”)

• If defined, the function __assert() is called
instead, which prints additional
information.

• Especially useful on Arduino

Diagnosis#define __ASSERT_USE_STDERR
#include <assert.h>

void __assert(const char *failedexpr,
 const char *file,
 int line,
 const char *func)
{
 Serial.print(file);
 Serial.print(":");
 Serial.print(line);
 Serial.print(": ");
 Serial.print(func);
 Serial.print(": Assertion failed: ");
 Serial.println(failedexpr);
 abort();
}

Assert.ino:20: setup(): Assertion failed: 2 + 2 == 5

How to Test?

How do we cover as much
behaviour as possible?

Configurations

So, how can we cover as much
behavior as possible?

What to Test?

• Goal: Cover every aspect of the behaviour

• Required behaviour: by specification  
(functional testing)

• Implemented behaviour: by code 
(structural testing)

Functional Testing

• cgi_decode takes a string and

1. replaces every “+” with a space

2. replaces every “%xx” with a character with
hexadecimal value xx 
(returns an error code if xx is invalid)

3. All other characters remain unchanged

• These properties must be tested!

Functional Testing

#include <assert.h>

// replaces every “+” with a space
void test_cgi_decode_plus() {
 char *encoded = "foo+bar+";
 char decoded[20];

 int result = cgi_decode(encoded, decoded);
 assert(result == 0);
 assert(strcmp(decoded, "foo bar ") == 0);
}

Functional Testing

#include <assert.h>

// replaces every “%xx”
// with a character with hexadecimal value xx
void test_cgi_decode_hex() {
 char *encoded = "foo%30bar";
 char decoded[20];

 int result = cgi_decode(encoded, decoded);
 assert(result == 0);
 assert(strcmp(decoded, "foo0bar") == 0);
}

Functional Testing

#include <assert.h>

// replaces every “%xx”
// with a character with hexadecimal value xx
void test_cgi_decode_invalid_hex() {
 char *encoded = "foo%zzbar";
 char decoded[20];

 int result = cgi_decode(encoded, decoded);
 assert(result != 0);
}

Test Suite

#include <assert.h>

// All tests
void test_cgi_decode() {
 test_cgi_decode_plus();
 test_cgi_decode_hex();
 test_cgi_decode_invalid_hex();
}

• A test suite combines multiple tests

• Execute after every change

Structural Testing
public roots(double a, double b, double c)

double q = b * b - 4 * a * c;

q > 0 && a != 0

// code for two roots

q == 0

// code for one root

// code for no roots

return

• Based on the structure of the
program

• The more parts of the
program are covered
(executed), the higher the
chance to find errors

• “Parts” can be: instructions,
transition, paths, conditions…

To talk about structure, we turn the program into a control flow graph,
where statements are represented as nodes, and edges show the
possible control flow between statements.

/**  
 * @title cgi_decode  
 * @desc  
 * Translate a string from the CGI encoding to plain ascii text  
 * ’+’ becomes space, %xx becomes byte with hex value xx,  
 * other alphanumeric characters map to themselves  
 *  
 * returns 0 for success, positive for erroneous input  
 * 1 = bad hexadecimal digit  
 */

int cgi_decode(char *encoded, char *decoded)
{  
 char *eptr = encoded;  
 char *dptr = decoded;  
 int ok = 0;

cgi_decode
/**  
 * @title cgi_decode  
 * @desc  
 * Translate a string from the CGI encoding to plain ascii text  
 * ’+’ becomes space, %xx becomes byte with hex value xx,  
 * other alphanumeric characters map to themselves  
 *  
 * returns 0 for success, positive for erroneous input  
 * 1 = bad hexadecimal digit  
 */

int cgi_decode(char *encoded, char *decoded)
{  
 char *eptr = encoded;  
 char *dptr = decoded;  
 int ok = 0;

A

Here’s an ongoing example. The function cgi_decode translates a
CGI-encoded string (i.e., from a Web form) to a plain ASCII string,
reversing the encoding applied by the common gateway interface (CGI)
on common Web servers.
(from Pezze + Young, “Software Testing and Analysis”, Chapter 12)

 while (*eptr) /* loop to end of string (‘\0’ character) */  
 {  
 char c;  
 c = *eptr;  
 if (c == ’+’) { /* ‘+’ maps to blank */  
 *dptr = ’ ’;
 } else if (c == ’%’) { /* ’%xx’ is hex for char xx */  
 int digit_high = Hex_Values[*(++eptr)];  
 int digit_low = Hex_Values[*(++eptr)];
 if (digit_high == -1 || digit_low == -1)  
 ok = 1; /* Bad return code */
 else  
 *dptr = 16 * digit_high + digit_low;
 } else { /* All other characters map to themselves */  
 *dptr = *eptr;  
 }
 ++dptr; ++eptr;  
 }

 dptr = ‘\0’; / Null terminator for string */  
 return ok;  
}

B

C

D
E

G

F

H

I

L

M

 while (*eptr) /* loop to end of string (‘\0’ character) */  
 {  
 char c;  
 c = *eptr;  
 if (c == ’+’) { /* ‘+’ maps to blank */  
 *dptr = ’ ’;
 } else if (c == ’%’) { /* ’%xx’ is hex for char xx */  
 int digit_high = Hex_Values[*(++eptr)];  
 int digit_low = Hex_Values[*(++eptr)];
 if (digit_high == -1 || digit_low == -1)  
 ok = 1; /* Bad return code */
 else  
 *dptr = 16 * digit_high + digit_low;
 } else { /* All other characters map to themselves */  
 *dptr = *eptr;  
 }
 ++dptr; ++eptr;  
 }

 dptr = ‘\0’; / Null terminator for string */  
 return ok;  
}

216 Structural Testing

 { char *eptr = encoded;

char *dptr = decoded;

int ok = 0;

char c;

c = *eptr;

if (c == '+') {

*dptr = ' ';

}

while (*eptr) {

True

*dptr = '\0';

return ok;

}

False

True

int digit_high = Hex_Values[*(++eptr)];

int digit_low = Hex_Values[*(++eptr)];

if (digit_high == -1 || digit_low == -1) {

True

ok = 1;

}

True

else {

*dptr = 16 * digit_high + digit_low;

}

False

++dptr;

++eptr;

}

False

False

 elseif (c == '%') {

else

*dptr = *eptr;

}

int cgi_decode(char *encoded, char *decoded)

A

C

B

D E

F G

H I

L

M

Figure 12.2: The control flow graph of function cgi decode from Figure 12.1

Draft version produced August 1, 2006

A

B

C

D E

GF

H I

L
M

This is what cgi_decode looks as a CFG.
(from Pezze + Young, “Software Testing and Analysis”, Chapter 12)

216 Structural Testing

 { char *eptr = encoded;

char *dptr = decoded;

int ok = 0;

char c;

c = *eptr;

if (c == '+') {

*dptr = ' ';

}

while (*eptr) {

True

*dptr = '\0';

return ok;

}

False

True

int digit_high = Hex_Values[*(++eptr)];

int digit_low = Hex_Values[*(++eptr)];

if (digit_high == -1 || digit_low == -1) {

True

ok = 1;

}

True

else {

*dptr = 16 * digit_high + digit_low;

}

False

++dptr;

++eptr;

}

False

False

 elseif (c == '%') {

else

*dptr = *eptr;

}

int cgi_decode(char *encoded, char *decoded)

A

C

B

D E

F G

H I

L

M

Figure 12.2: The control flow graph of function cgi decode from Figure 12.1

Draft version produced August 1, 2006

A

B

C

D E

GF

H I

L
M

“test”
✔

✔

✔

✔

✔

✔
✔

While the program is executed, one statement (or basic block) after the
other is covered – i.e., executed at least once – but not all of them.
Here, the input is “test”; checkmarks indicate executed blocks.

216 Structural Testing

 { char *eptr = encoded;

char *dptr = decoded;

int ok = 0;

char c;

c = *eptr;

if (c == '+') {

*dptr = ' ';

}

while (*eptr) {

True

*dptr = '\0';

return ok;

}

False

True

int digit_high = Hex_Values[*(++eptr)];

int digit_low = Hex_Values[*(++eptr)];

if (digit_high == -1 || digit_low == -1) {

True

ok = 1;

}

True

else {

*dptr = 16 * digit_high + digit_low;

}

False

++dptr;

++eptr;

}

False

False

 elseif (c == '%') {

else

*dptr = *eptr;

}

int cgi_decode(char *encoded, char *decoded)

A

C

B

D E

F G

H I

L

M

Figure 12.2: The control flow graph of function cgi decode from Figure 12.1

Draft version produced August 1, 2006

A

B

C

D E

GF

H I

L
M

“test”
✔

✔

✔

✔

✔

✔
✔

0

25

50

75

100

Coverage

63

The initial Coverage is 7/11 blocks = 63%. We could also count the
statements instead (here: 14/20 = 70%), but conceptually, this makes
no difference.

216 Structural Testing

 { char *eptr = encoded;

char *dptr = decoded;

int ok = 0;

char c;

c = *eptr;

if (c == '+') {

*dptr = ' ';

}

while (*eptr) {

True

*dptr = '\0';

return ok;

}

False

True

int digit_high = Hex_Values[*(++eptr)];

int digit_low = Hex_Values[*(++eptr)];

if (digit_high == -1 || digit_low == -1) {

True

ok = 1;

}

True

else {

*dptr = 16 * digit_high + digit_low;

}

False

++dptr;

++eptr;

}

False

False

 elseif (c == '%') {

else

*dptr = *eptr;

}

int cgi_decode(char *encoded, char *decoded)

A

C

B

D E

F G

H I

L

M

Figure 12.2: The control flow graph of function cgi decode from Figure 12.1

Draft version produced August 1, 2006

A

B

C

D E

GF

H I

L
M

“test”
✔

✔

✔

✔

✔

✔
✔

“a+b”

✔

0

25

50

75

100

Coverage

72

and the Coverage increases with each additionally executed
statement…

216 Structural Testing

 { char *eptr = encoded;

char *dptr = decoded;

int ok = 0;

char c;

c = *eptr;

if (c == '+') {

*dptr = ' ';

}

while (*eptr) {

True

*dptr = '\0';

return ok;

}

False

True

int digit_high = Hex_Values[*(++eptr)];

int digit_low = Hex_Values[*(++eptr)];

if (digit_high == -1 || digit_low == -1) {

True

ok = 1;

}

True

else {

*dptr = 16 * digit_high + digit_low;

}

False

++dptr;

++eptr;

}

False

False

 elseif (c == '%') {

else

*dptr = *eptr;

}

int cgi_decode(char *encoded, char *decoded)

A

C

B

D E

F G

H I

L

M

Figure 12.2: The control flow graph of function cgi decode from Figure 12.1

Draft version produced August 1, 2006

A

B

C

D E

GF

H I

L
M

“test”
✔

✔

✔

✔

✔

✔
✔

“a+b”

✔

“%3d”

✔

✔

0

25

50

75

100

Coverage

91

216 Structural Testing

 { char *eptr = encoded;

char *dptr = decoded;

int ok = 0;

char c;

c = *eptr;

if (c == '+') {

*dptr = ' ';

}

while (*eptr) {

True

*dptr = '\0';

return ok;

}

False

True

int digit_high = Hex_Values[*(++eptr)];

int digit_low = Hex_Values[*(++eptr)];

if (digit_high == -1 || digit_low == -1) {

True

ok = 1;

}

True

else {

*dptr = 16 * digit_high + digit_low;

}

False

++dptr;

++eptr;

}

False

False

 elseif (c == '%') {

else

*dptr = *eptr;

}

int cgi_decode(char *encoded, char *decoded)

A

C

B

D E

F G

H I

L

M

Figure 12.2: The control flow graph of function cgi decode from Figure 12.1

Draft version produced August 1, 2006

A

B

C

D E

GF

H I

L
M

“test”
✔

✔

✔

✔

✔

✔
✔

“a+b”

✔

“%3d”

✔

✔

“%zz”

✔

0

25

50

75

100

Coverage

100

… until we reach 100% block Coverage (which is 100% statement
Coverage, too).

A Test…

• should not show that a program works

• but rather show that a program does not
work

• requires creativity in testing!

Who Should Test?

Developer  
• understands the system

• will test cautiously

• wants to deliver code

Independent Tester  
• must learn the system

• wants to uncover errors

• wants to deliver quality

From Pressman, “Software Engineering – a practitioner’s approach”,
Chapter 13

The Best Tester
A good tester should be creative and destructive – even sadistic in
places.
– Gerald Weinberg, “The psychology of computer programming”

The Developer
The conflict between developers and testers is usually overstated,
though.

Weinberg’s Law

A developer is not suited to test
their own code.

Theory: As humans want to be honest with themselves, developers are
blindfolded with respect to their own mistakes.
Evidence: “seen again and again in every project” (Endres/Rombach)
From Gerald Weinberg, “The psychology of computer programming”

Sadistic Test

#include <assert.h>

// replaces every “%xx”
// with a character with hexadecimal value xx
void test_cgi_decode_incomplete_hex() {
 char *encoded = "foo%g";
 char decoded[20];

 int result = cgi_decode(encoded, decoded);
 assert(result != 0);
}

• Leads to access outside array bounds

Debugging

• Testing is followed by
debugging

Nach dem Testing folgt die
Fehlersuche

Systematic Debugging
T
R
A
F
F
I
C

rack the problem
eproduce
utomate
ind Origins
ocus
solate
orrect

Tracking the Problem
T
R
A
F
F
I
C

Tracking the Problem

• Every problem is entered into the bug
database

• The priority determines what problem will
be addressed next

• When all problems are solved, the product
is finished

T
R
A
F
F
I
C

Life Cycle
of a Problem

UNCONFIRMED NEW ASSIGNED

REOPENED

VERIFIED CLOSED

INVALID

DUPLICATE

INVALID

DUPLICATE

FIXED

WORKSFORME

WONTFIX

NEW

FIXED

Status

Resulting
Resolution

RESOLVED

if resolution is FIXED

T
R
A
F
F
I
C

Reproducing

Program

Data

Interaction

Communication

Randomness Operating system

Parallelism

Physics

Debugger

T
R
A
F
F
I
C

Automating
 // Test for host
 public void testHost() {

int noPort = -1;
 assertEquals(askigor_url.getHost(), "www.askigor.org");

assertEquals(askigor_url.getPort(), noPort);
 }

 // Test for path
 public void testPath() {

assertEquals(askigor_url.getPath(), "/status.php");
 }

 // Test for query part
 public void testQuery() {

assertEquals(askigor_url.getQuery(), "id=sample");
 }

T
R
A
F
F
I
C

Automating

• Every problem should be automatically
reproducible

• This is done by means of unit tests

• The test cases are executed after every
change

T
R
A
F
F
I
C

Finding the Origin

1. The programmer creates a
defect – an error in the code

2. The executed defect creates an
infection – an error in the
program state

3. The infection spreads…

4. …and becomes visible as a
malfunction.

T
R
A
F
F
I
C

✘

✘

✘ ✘

variables

We must break this infection chain.
t

✘

Finding the Origin
T
R
A
F
F
I
C

t

variables

✔

✘

?
t

The Defect
T
R
A
F
F
I
C

t

variables

✔

✘ t

✘

T
R
A
F
F
I
C

A Program State

T
R
A
F
F
I
C

Finding the Origin

1. We start with a known infection  
(e.g. at the end of the execution)

2. We look for the infection in the
previous state

T
R
A
F
F
I
C

✘

✘

✘ ✘

variables

t

✘

T
R
A
F
F
I
C

T
R
A
F
F
I
C

A Program State

T
R
A
F
F
I
C

Focusing
T
R
A
F
F
I
C

Focusing
When searching for infections, we focus on
places in the program state, that are

• probably wrong (e.g. because there were errors
here previously)

• explicitly wrong (e.g. because they fail an
assertion)

Assertions are the most effective means for
finding infections.

T
R
A
F
F
I
C

Finding Infections
struct Time {
 int hour; // 0..23
 int minutes; // 0..59
 int seconds; // 0..60 (incl. leap seconds)
};

void set_hour(struct Time *t, int h);
…

Every value from 00:00:00 to 23:59:60 is valid

T
R
A
F
F
I
C

Finding the Origin

void set_hour(struct Time *t, int h)
{
 assert (sane_time(t)); // Precondition
 …
 assert (sane_time(t)); // Postcondition
}

int sane_time(struct time *t)
{
 return (0 <= t->hour && t->hour <= 23) &&
 (0 <= t->minutes && t->minutes <= 59) &&
 (0 <= t->seconds && t->seconds <= 60);
}

T
R
A
F
F
I
C

Finding the Origin

sane() is the invariant of a time object:

• holds before every time function

• holds after every time function

T
R
A
F
F
I
C

int sane_time(struct time *t)
{
 return (0 <= t->hour && t->hour <= 23) &&
 (0 <= t->minutes && t->minutes <= 59) &&
 (0 <= t->seconds && t->seconds <= 60);
}

Finding the Origin

void set_hour(struct Time *t, int h)
{
 assert (sane_time(t)); // precondition
 …
 assert (sane_time(t)); // postcondition
}

• Precondition fails = infection before the function

• Postcondition fails = infection in the function itself

• All assertions ok = no infection

T
R
A
F
F
I
C

Complex Invariants
int sane_tree(struct Tree *t) {
 assert (rootHasNoParent(t));
 assert (rootIsBlack(t));
 assert (redNodesHaveOnlyBlackChildren(t));
 assert (equalNumberOfBlackNodesOnSubtrees(t));
 assert (treeIsAcyclic(t));
 assert (parentsAreConsistent(t));

 return 1;
 }
}

T
R
A
F
F
I
C

Assertions

t

✔

✘ t

✔
✔
✔
✔
✔
✔
✔

✔
✔
✔
✔
✔
✔
✔

✔
✔
✔
✔
✔
✔
✔

T
R
A
F
F
I
C

Focusing

• All possible influences must be checked

• Focusing on most likely candidates

• Assertions help to find infections fast

T
R
A
F
F
I
C

Isolating

• Error causes are narrowed down
systematically – using observations and
experiments.

T
R
A
F
F
I
C

The Scientific Method
T
R
A
F
F
I
C

1. Observe a part of the universe

2. Formulate a hypothesis that is consistent with
the observation

3. Use the hypothesis to make predictions.

4. Test the predictions using experiments or
observations and adapt the hypothesis.

5. Repeat 3 and 4 until the hypothesis becomes a
theory.

T
R
A
F
F
I
C

Hypothesis

Bug report

Code

execution

more executions

Prediction Experiment Observation 
+ Conclusion

Hypothesis is confirmed:
refine the hypothesis

Hypothesis is disproved:
invent new hypothesis

Diagnosis

The Scientific Method

T
R
A
F
F
I
C

The execution causes a[0] = 0

At Line 37, a[0] = 0 should hold.

Observe a[0] at Line 37.

a[0] = 0 holds as predicted.

Hypothesis is confirmed.

Hypothesis

Prediction

Experiment

Observation

Conclusion

Explicit Hypotheses
T
R
A
F
F
I
C

The execution causes a[0] = 0

At Line 37, a[0] = 0 should hold.

Observe a[0] at Line 37.

a[0] = 0 holds as predicted.

Hypothesis is confirmed.

Remembering everything

is like playing Mastermind

with your eyes closed!

Explicit Hypotheses
T
R
A
F
F
I
C

T
R
A
F
F
I
C

Isolating
T
R
A
F
F
I
C

• We repeat the search for infection origins
until we find the defect.

• We proceed systematically — in terms of
the scientific method

• We guide the search through explicit steps
which we can retrace at any time

Correcting

Before correcting we must ensure that the
defect

• is indeed an error and

• it causes the malfunction

Only when both are ensured and
understood, we may correct the error.

T
R
A
F
F
I
C

☠
The Devil’s Guide

to Debugging
Find the defect by guessing:

• Spread debugging instructions everywhere

• Change the code until something works

• Don’t make backups of old versions

• Don’t even try to understand what the
program is supposed to do

T
R
A
F
F
I
C

☠
The Devil’s Guide

to Debugging

Don’t waste time trying to get to the bottom
of the problem

• Most problems are trivial anyway

T
R
A
F
F
I
C

☠
The Devil’s Guide

to Debugging
Use the most obvious repair:

• Repair only what you see:

x = compute(y);
// compute(17) is wrong – fix it
if (y == 17)
 x = 25.15;

Why deal with compute()?

T
R
A
F
F
I
C

Successful Correction
T
R
A
F
F
I
C

Homework
T
R
A
F
F
I
C

• Is the malfunction no longer present?  
(it should be a big surprise if it is still there)

• Could the correction introduce new errors?

• Was the same error made elsewhere?

• Is my correction entered into the version
control system and bug tracking?

Systematic Debugging
T
R
A
F
F
I
C

rack the problem
eproduce
utomate
ind Origins
ocus
solate
orrect

What is a Problem?

• Everything is a problem, that is perceived as
such by the user

• Developers must be able to take a user
perspective

Schlechte Erläuterungen (2)

Diese höchst aussagekräftige Fehlermeldung ist Microsoft Visual
Basic 5.0 zu entnehmen:

Nach dem Klicken auf Help erhalten wir:

Visual Basic encountered an error that was generated by the system or an
external component and no other useful information was returned.

The specified error number is returned by the system or external
component (usually from an Application Interface call) and is displayed in
hexadecimal and decimal format.

Lösung des Problems: Neu booten?

Diese höchst aussagekräftige
Fehlermeldung ist Microsoft Visual
Basic 5.0 zu entnehmen. Nach
dem Klicken auf Help erhalten wir:  
Visual Basic encountered an error
that was generated by the system
or an
external component and no other
useful information was returned.
The specified error number is
returned by the system or external
component (usually from an
Application Interface call) and is
displayed in hexadecimal and
decimal format.
Lösung des Problems: Neu booten?

Unix kann das auch…

Zum Schluß eine unfreundliche Fehlermeldung der Secure Shell:

$ ssh somehost.foo.com
You don’t exist, go away!
$ _

Diese Fehlermeldung erscheint etwa, wenn der NIS-Server gerade
nicht erreichbar ist. Nicht, daß man den Benutzer darüber aufklären
würde…

Diese Fehlermeldung erscheint etwa,
wenn der NIS-Server gerade nicht
erreichbar ist. Nicht, daß man den
Benutzer darüber aufklären würde...

What is a Problem?

• Everything is a problem, that is perceived as
such by the user

• Developers must be able to take a user
perspective

• Solution: Testing with real users!

Video
Task: Email A Tale of Two Cities to arthur@ximian.com; Subject14
http://www.betterdesktop.org/wiki/index.php?title=Data

Typische Vorgehensweise: Benutzer
sollen mit dem System eine bestimmte
Aufgabe erledigen – und halten
anschließend fest, was sie gestört hat.

