Maintaining Mental Models: A Study of Developer Work Habits

Thomas D. LaToza
Institute for Software Research International
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213 USA
tlatoza@cs.cmu.edu

ABSTRACT

To understand developers’ typical tools, activitiasd practices
and their satisfaction with each, we conducted swoveys and
eleven interviews. We found that many problems efoscause
developers were forced to invest great effort recog implicit

knowledge by exploring code and interrupting teatesiand this
knowledge was only saved in their memory. Contraoy
expectations that email and IM prevent expensigl tvitches
caused by face-to-face interruptions, we found fhae-to-face
communication enjoys many advantages. Contrarxpectations
that documentation makes understanding designnadgoeasy,
we found that current design documents are inadeq@antrary
to expectations that code duplication involvesdbpy and paste
of code snippets, developers reported several typesplication.

We use data to characterize these and other pretdenh draw
implications for the design of tools for their stdun.

Categories and Subject Descriptors

D2.7 [Distribution, Maintenance, and Enhancemenit
Documentation; D2.9 Nlanagemeni: Programming teams;
D.2.6 [Programming Environments]: Integrated environments.

General Terms
Design, Documentation, Experimentation, Human Facto

Keywords
Code duplication, communication, interruptions, €advnership,
debugging, agile software development

1. INTRODUCTION

Developers must know or obtain a variety of infotioa to
successfully understand and edit code — what amndbange, how
design decisions are scattered across code [4]ratienale or
history behind decisions [7], the slice affectingaaiable’s value
[13], the owner responsible for the code [1], otdewvelopers
currently editing it, which changes will break cogleewhere, and
which changes elsewhere affect it. Developers ahcamong
many strategies to record, communicate, and discdkes
information. Naming, comments, and design documetitsv

Permission to make digital or hard copies of alpart of this work fo
personal or classroom use is granted without feeiged that copies a
not made or distributed for profit or commerciavadtage and th
copies bear this notice and the full citation oa finst page. To cof
otherwise, or repulsh, to post on servers or to redistribute to |
requires prior specific permission and/or a fee.

ICSE'06, May 2—-28, 2006, Shanghai, China.

Copyright 2006 ACM 1-59593-085-X/06/0005...$5.00.

Gina Venolia
Microsoft Research
One Microsoft Way

Redmond, WA 98052 USA
gina.venolia@microsoft.com

Robert DeLine
Microsoft Research
One Microsoft Way

Redmond, WA 98052 USA
rob.deline@microsoft.com

developers to share their current understandindh \itture

developers, but require an investment of time andwkedge

about what future developers will need to learnn¥@mtions,

factoring, and patterns minimize documentation bosd by
providing general answers but constrain possiblatisos and

themselves become more to learn. For many typagarmation,

the simplest solution is frequently to ask a teatenfar the

answer [2], yet the teammate is interrupted, mbsinge tasks,
and forgets goals, decisions, and interpretati@bsvant to the
interrupted task. Modern development environmerdasmite

facts from code (e.g. callers of a method, writeysa field,

methods overriding a method, average execution)toneother

artifacts and require neither interruption nor istveent in error
prone documentation maintenance, but require awzeotior or
researcher to have anticipated the developer’atgitu and needs.
And computing many types of information may require

developer’s assistance.

We performed a series of investigations of develapEhe central
theme that emerged was the developers’ reliandenplicit code
knowledge. Developers go to great lengths to eraatl maintain
a mental model of the code, and knowledge is shbetdieen
developers through face-to-face communication amel ¢ode
itself. Developers avoid using explicit, writtenpositories of
code-related knowledge in design documents or emvain
possible, preferring to explore the code directig,awhen that
fails, talk with their teammates. Exploring codemade difficult
by tool limitations and difficulties traversing aglonships. Using
the social network as the second line of inquiryuses
interruptions and lost work, but those costs arfsebdfby other
benefits. Implicit knowledge retention is made [poss by a
strong, yet often implicit, sense of code ownerstfip practice of
a developer or team being responsible for fixingsand writing
new features in a well defined section of codesThcreases the
payoff from the large investment understanding cdd®plicit
knowledge retention makes some information diffitaluncover,
particularly code duplication. Yet developers viéwfar more
broadly than the clone detection literature.

We used both qualitative data from interviews an@rgitative
data from two surveys in our investigation. White toreadth of
our exploratory approach precludes the detail resggsto fully
understand each topic, and we were often left mitine questions
than answers, we highlight interesting observatiand propose
promising directions for future investigation.

We first present a taxonomy of developer activityich guided
our investigation. We then describe the study desand
organizational characteristics of the participanis. the first
results section, we describe developers’ time ystme usage,
and tool preferences. In the second, we discussndtare,

Table 1. Descriptions of activities read by respafents. Descriptions ending in [...] have been shorted.

Designing
Writing
Understanding

Analyzing a new problem and mapping out the brdaa bf code which will be used to solve the probl¢m]
Creating a new method, source file, or script agttirgy it to a compilable state
Determining information about code including theuts and outputs to a method, what the call staokd like,

why the code is doing what it is doing, or theamatile behind a design decision. ...

Editing
Unit testing
Communicating

Overhead
Other code [No description provided]
Non code Any other activities included in your work time

Editing existing code and returning it to a comipliéastate.

Ensuring that code is behaving as expected. [...]

Any computer mediated or face-to-face communicagibout information relevant to a coding task [...]
Any other code related activities including builgirsynchronizing code, or checking in changes.

motivations, and problems with developers’ reliamceimplicit
code knowledge. Finally, we present design reconaaions for
tools and conclude.

2. ACTIVITY TAXONOMY

We began our investigation by characterizing deyais

interactions with code — their activities, toolsnda biggest
problems. Rather than bringing a preconceived efdocus, we
wished to be more opportunistic and let our usetse-developers
— guide us in selecting what they perceived as npastful

through reports of their time, tool effectivenessgeptions, and
problems.

Two previous studies have categorized developertviges in

the field through diaries, observation, and survegsthe first

study [9], thirteen developers on a large softwangect logged
every hour for a year which of 13 activities thegrevengaged in.
The categories distinguished different life cycteivdties such as
estimation, requirements, high level & low levelsidm, test
planning, coding, inspections, and high level & I@wel testing.
Most developers reported being in a coding stagespide

waterfall or spiral models predicting developersrap their time
coding in a coding stage, developers reported cpftinonly half

of their time with the rest spent on activitiesarsated with other
life cycle stages.

In the second study [12], developers were surveykserved, and
interviewed to count the number of times they shett between
one of thirteen activities. Observations of eighvelopers for an
hour each revealed that they most frequently execudNIX
commands, followed by reading the source, loadinguaning
software, and reading or editing notes. Yet is olear how
activity switches translate to time spent on atiigi as activities
may be frequent and brief or long and infrequent.

We designed our own taxonomy (see Table 1) to fauose
specifically on code related activities and the iwagton behind
these activities. We wished to know specifically fghat types of
activities developers used development environmants which
activities environments were poorest in supportifge also
wanted to know whether developers chose differenist for
different activities.

From the our own personal experience as softwaveloleers,
hypotheses about what developers might find dilfiand topics
of ongoing research, we also formulated ninetegmothesized

problems developers might have in obtaining or comigating
about code-related knowledge.

3. METHOD

The study consisted of three parts: a survey aactiities, tools,
and problems (the “activities survey”), a serieseii-structured
interviews, and a survey of work practices (thelltfo-up
survey”).

3.1 Organization

The population we selected for study was softwaeetbpers at
Microsoft Corporation. Microsoft is a large soft@acompany
whose products span a wide range of markets: watalpo
(MSN); consumer devices (Windows Mobile, Xbox); iodf

productivity applications (Windows, Office); andwédoper tools
and infrastructure (Visual Studio, Great Plains LS&grver). Of
the roughly 63,000 employees, roughly 6,000 aretwsoé

developers who work on shipping code in producugso Other
developers include those who work on test infrastme and tools
and those in Microsoft Consulting and Microsoft &ash. These
groups were excluded from our study.

Within a product group, there are three core relesoftware
design engineer (SDE), program manager, and satvwest
engineer. SDEs are responsible for software desixjng bugs,
and writing new features. Program managers apponsible for
specifying and prioritizing features and for wrdgirhigh level
feature specification documents which developers tas write
code and testers use to write test cases. Softiwateengineers
translate feature specifications into test caseb raanually test
the software. A somewhat less common role is soéveesign
engineers in test (SDE/T) who write test
infrastructure. Members of each of these roles wiorksmall
teams of “individual contributors.” Individual coitiutors are
managed by a lead (e.g. lead software design esyingho
reports to a manager (e.g. software design enginegrager).
Other less frequent roles include software archit@roduct
designer, and usability engineer. Nearly all il
contributors have private offices (not cubes) andstrdo not
share an office.

Product group work for a particular release of @adpict is divided
into milestones. In the first milestone, programnagers make
initial decisions about what features will be ire trelease, what
features developers will work on in subsequent stilees, and
write initial feature specification documents. SDay work on

automation

bug fixes and patches from the previous releaseott new

technologies, or plan major changes. Several roiest of

development follow. Each milestone is divided mordess into a
coding phase, where features are added, and #zstbn phase,
where developers concentrate on fixing bugs. Dutimg last

milestone, most of the work involves fixing bugss the release
nears, most changes become too time consumingskydto test,

and developers spend more time making the nextovésscode

more maintainable (see Figure 1).

3.2 Procedure

Activities survey participants first completed a nmher of
demographic items. They next read the activity dpsons found
in Table 1. They were then asked to report thetifracof their
past week work time spent on each activity, chapsimong 10%
increments plus choices for 1%, 2%, and 5%. Foh eativity,
they were asked the percent of time on that agtitiéy used each
of a set of tools or techniques, using the samé& sé@r each
tool/technique combination and activity, developgese asked to
rate its effectiveness on a seven-point LikertescBEinally, they
rated the seriousness of each hypothesized pralderg a seven-
point Likert scale. There were 204 questions in all

While we expect respondents misremembered, misa&imand
misreported the time fractions, we expect they wabde to

differentiate across large distinctions like valmesr 0% and 5%
or values near 10% and 40%. We normalized eachpgadu
fractional responses to sum to 100%.

Before deploying the activities survey we used techniques to
ensure that its design fit the activities, toolschniques, and
problems relevant to our target population. Firg mn three
experienced developers through the survey usiminé&-but-loud

protocol. We adapted the survey wording and strechased on
their feedback. Second, we developed a reducedowecs the

survey that included extensive opportunities fortipgants to

write in additional activities, tools, and problenWe deployed
this pilot survey to 99 randomly selected develeerd received
28 responses. Any write-in
respondents was included in the activities surideyactivities or
problems met this criterion, but a few tools did.

We selected the four problems rated as the mosbuseron
average from the activities survey (see Table 2) designed a
series of interview questions to elicit qualitatiméormation about
the character and impact of these problems. We caddgeral
general,
characterized their work and activites and on
communication patterns. Two authors attended eatdrview.
Ten of the eleven interviewees consented to havihg
conversation audio-recorded. All three authors uked notes or
recordings to generate nearly 1,000 note cardsheémvations.
The cards were then used for a card sort [14] wkieeg were
placed on the walls of a ~30 foot hallway to fornoups, elicit
themes and trends, and consolidate observation®ssacr
interviwers and interviewees.

From the card sort we identified several prelimjnaypotheses.
We developed a follow-up survey to assess the hgses
amenable to surveying. Participants first answetechographic
questions. Next they answered questions aboutifieecd their
feature team, which was defined as, “the core gafugevelopers
that you work with.” They then answered a seriesjoéstions

response from two or amor

open ended questions on how the partispan
team

about communication patterns, code ownership, desig
documents, understanding unfamiliar code, codeicatpin, unit
testing, and adoption of agile practices. Thereewld7 questions
in all.

3.3 Participants

We drew our participants from the population thaald directly
with code: SDEs, SDE/Ts, and architects at bothinlésidual
contributor and lead level. After the activitiessy we decided
to focus on developers working shippingcode, and so removed
the responses from architects and SDE/Ts from nalysis and
the subsequent observations. We felt that our gugeesstions
were most informative about SDEs, and we lackeduiegs to
investigate all three roles. We excluded contractrecause of
logistical problems and excluded interns becausemgded to
generalize to professional software developers.

Participants were invited to participate in theveys by email and
sent a reminder email several days before the gsiwere closed
if they had not yet responded. Respondents wer@ensated by
entry in a drawing for $50 gift certificates. Irethctivities survey,
we randomly sampled 1,000 participants from thetigpant

pool, excluding those invited to take the pilotay. We received
157 responses, 104 from SDEs, including 18 frord BRBESs. We
were somewhat disappointed with the response rateattribute
it to the survey being deployed in early July wineany were on
vacation, some technical problems with the surveplayment,

and sheer size of the survey. In the follow-up eurvwe

randomly sampled 1,000 from the same pool exclu@biETs

and recipients of the activities and pilot survaye received 187
responses, 176 from SDEs. For both surveys, wedlidneasure
self selection bias to ensure our sample was tagyesentative.

The activities survey contained several demograjjuiestions.
Since participants from all surveys were randonaljngled from
the same population of SDEs, and we expect anyssédfiction
bias to apply equally to both surveys, these deapigcs apply to
all study participants. The average respondenmt fheir 30’s with
an undergrad degree, 12.1 (+ 6.5) years programrbidg(z 4.2)
years at Microsoft, and 2.9 (x 2.4) years on tleirent team;
89% of respondents are male. 37% reported that ofotheir
code base was written in C#, compared to 56% inr C-b+,
reflecting both older, established code bases amgncode bases
written in C#.

We interviewed eleven respondents, five SDEs from pilot
survey and 6 lead SDEs from the activities survey.

4. ACTIVITIES AND TOOLS

Far from spending all of their time understanding ealiting

existing code, developers reported spending mogheif time

elsewhere. Developers’ tool use was frequentlyetated with

their tool preferences. This is clearly visibletlire positive linear
relationship of tool usage to effectiveness (Fidare As the study
was exploratory rather than being hypothesis drivesults are
presented with descriptive statistics. Times aponed using the
mean (+ standard deviation).

4.1 Time breakdown

Developers reported spending a little less thaf dfatheir time
(49% * 39%) fixing bugs, 36% (+ 37%) writing nevafares, and
the rest (15% + 21%) making code more maintainablas
confirmed our expectation that most developers dpanoch of

100%

80%
Fixing bugs

60%

40%

Percent of work time

Writing new features

20%

0%
25-36 13-24 (n=16) 7-12

4-6 1-3
(n=2) Months until next planned release (n=34) (n=14) (n=22)

Figure 1. The time spent fixing bugs, making codmore
maintainable, and writing new features varies withthe time
until the product is planned to be released.

100—

80— . & *
: . *
= 60— i * ¥ * * *
‘c * : *
b * L . ¥ * * *
[*
S 40— * * *
o

Editing —
Witing—

*
20— g
0_
I
T
o
[
£
@
>
8

UnitTesting— m—l
I]—| * oM R F

Communicating—
Understanding—
NonCode —
Designing —
OtherCode —

Figure 2. A box plot of activity time. The box bttom,
internal line, and top are the first, second, and thirdjuartiles.
The exterior lines extend for 1.5 times the intergartile region,

with outliers displayed above.

their time fixing bugs. But the vast variability these numbers
also demonstrates that typical development actidtyes greatly
across teams and across the lifecycle (Figure 1).

Median times spent on each activity (Table 1) amarkably
close (Figure 2), dashing hopes that a single iact@eccounts for
most of developers’ time. Most developers engagenultiple
activities in a given week (Figure 4). However, shactivities
still had individual developers who spent most lefit week on
that activity.

Pairwise correlations of activities (Figure 3) ralveseveral
statistically significant, if not large, activity elationships.
Designing code and writing new code are positivayrelated.
Editing code goes hand-in-hand with overhead tik&shuilding
and source code management. Understanding existidg is
negatively correlated with designing code and wgithew code,
suggesting that one is either working on new codexamining
existing code, but not both at the same time. d»ésg and

0.214

0365,

‘ Other Code ‘ ‘ Overhead ‘ ‘ ‘Editing ‘
-0.301== Designing | -0.244
4 7
‘ Understanding ‘ 0.333 ‘ Non-code ‘
\-0.42H Writing L_-o.270/
-0.251

\

\

‘ Communicating ‘

Figure 3. Statistically significant correlations ketween time
spent on each activity. Negative numbers indicat@verse
relationships. (Spearman’s rho, thin lines fop<0.05, thick

lines for p<0.01,n=104.)

25

N
o
n

—
o
n

Percent of Developers
-
wv
1

2 3 4 5 6 7 8 9
Number of Activities in Past Week

Figure 4. Most developers engage in a number oftagties in
a given week.

writing are negatively correlated with non-code iaties,
suggesting that working on new code is an all-conisg activity.
The negative correlation between writing new coded a
communicating about code suggests developers wprkimnew
functions or classes need less information fronir teeammates.
Unit testing was the only activity for which we fodi no
correlation to other activities. It is worth najithat analyzing
only pairwise correlations neglects any relatiopshinvolving
multiple activities.

4.2 Communicating

Developers both preferred and spent more time Usicegrto-face
communication than electronic communication (Figusa),

replicating a 1994 finding [9] of a strong prefererfor face-to-
face over email. Yet, email has since increasqarégminence and
sophistication and instant messaging has made lpesshort
response time, interactive communication. Developgave a
number of reasons for preferring face-to-face comioation.

Developers reported that email questions often tamks or days
to receive a response, that developers frequenintarpreted
emails’ meanings, writing an email without immedidéedback

often resulted in explanations with more or lestaitiehan the 71
recipient required, and that email was just teditusvrite. We
believe many of these problems generalize to o#iectronic
communication such as documentation, bug databases|M.
Developers still use email when the issue is of lpriority,
involves multiple people, or involves non-teammategeraging
16.1 (+ 14.5) emails sent to teammates in the preek and 5.9
(x 11.5) to non-teammates. The preference for faceface
communication over email might limit benefits froaystems
helping developers locate old emails, and the ®&ari
discouraging email use might make it difficult taceurage more
retention of knowledge in emails. Unplanned, fazdace
meetings happen frequently with teammates, avegagid (+ 0 10 15 20 25 30
11.7) per week, and much less frequently with reawtmates, % communicating about code time

averaging 2.6 (= 4.0). Communication within thentes much
more common than communication across teams, itaicshat
the culture of informal communication works welldathat the
team boundaries are typically in the right places.

Unplanned meetings
[]
51 Planned meetings
External docs d
Webe ® Igternal docs

IM®
Phonc e Bug database

1 other

Email
[]

Effectiveness (1 = Low, 7 = High)
»

w4

High)

Most developers reported using IM only infrequerfity code

related tasks. It was more frequently used to abiegmmmates for
social functions (e.g. going to lunch) or to tatkfamily. Use of

the telephone for code-related communication wadaily rare.

Whiteboard
Paper °
[]

Low, 7

Source code editor
[]

Other o Visio

4 ® " Word processor
[]

)) Visual d:esigners
4.3 Designing

Despite the availability of high-level views of @dnd visual
editors such as tools for UML, developers rematcuged on the
code itself. Developers reported using a sourcee aditor the
most for design while paper and whiteboards weregdeed most 7 T o = » i 30 =
effective (Figure 5b). We hypothesize that the nieefind details % designing code time

about the existing design by using a source codiored

discourages increased use of paper or whiteboexds) though 7.

both were viewed as more effective tools.

Effectiveness (1

High)

4.4 Perceived problems

Table 2 lists the problems we proposed in the suamd the
percent of respondents who agreed that the prolsleniserious
problem for me.” The top four are: understanding thtionale
behind existing code, having to switch tasks bezafsnanager
or teammate requests, being aware of changes asewhnd
finding code duplicates. We focused our semi-stnect
interviews on these problems to discern what mattesm
difficult. Several themes emerged:

Visual Studio debugger
[]
Other Dff tool
o °

Low, 7

[J []
Source Insight Visual Studio editor

Pr'ofiler .
Other debugger

15QL &dtor V1
eEmacs

L]
“SlickE dit'Notepad

EN

Effectiveness (1
w

» Developers go to great lengths to create and taiairrich 0 5 10 15 20 5 30
mental models of code that are rarely permaneatgnded. % understanding code time

« Understanding the rationale behind code is tiggdst problem
for developers. When trying to understand a pieteaale, 71
developers turn first to the code itself and, witest fails, to
their social network.

High)

* Developers and development managers use a varietyols
and work practices and are actively looking fortdresolutions.

Debl:gger Reading code
L]
Trace statements

Low, 7

" . O oCheckin messages
A'"gh .level VEWSRunning code

We present these themes with support from ourvielip survey.

5. MAINTAINING MENTAL MODELS
Developers create and maintain intricate mental @sodf the
code. Through our interviews, we know that develspwithout
referencing written material, can talk in detailoab their
product’s architecture, how the architecture islemented, who 1
owns what parts, the history of the code, to-dashsists, and
meta-information about the code. For the most piis

L
Other

Effectiveness (1

T T
0 10 20 30 40
% understanding code time

Figure 5a-d. (See text.)

Table 2. Developer ratings of proposed problems. Ithe
survey, problems were presented without headings drin a
different order.

This is a serious problem for me % agree

Code Understanding

Understanding the rationale behind a piece of 66%
code

Understanding code that someone else wrote 56%
Understanding the history of a piece of code 51%
Understanding code that | wrote a while ago 17%
Task Switching

Having to switch tasks often because of requests 62%
from my teammates or manager

Having to switch tasks because my current task 50%
gets blocked

Modularity

Being aware of changes to code elsewhere that 61%
impact my code

Understanding the impact of changes | make on 55%
code elsewhere

Links between Artifacts

Finding all the places code has been duplicated 59%
Understanding who “owns” a piece of code 50%
Finding the bugs related to a piece of code 41%
Finding code related to a bug 28%
Finding out who is currently modifying a piece of 16%
code

Team

Convincing managers that | should spend time 43%
rearchitecting, refactoring, or rewriting code

Convincing developers on other teams within 42%
Microsoft to make changes to code | depend on

Getting enough time with senior developers more 34%
knowledgeable about parts of code I'm working on

Expertise Finding

Finding the right person to talk to about a piete 0 39%
code

Finding the right person to talk to about a bug 38%
Finding the right person to review a change before 19%

check-in

knowledge is never written down, except in tranisferms such
as sketches on a whiteboard. One interviewee suntropdwell -
“Lots of design information is kept in peoples’ bed

5.1 Personal Code Ownership

Mental models are expensive to create and mainferelopers
have a strong notion ofpersonal code ownership which
constrains the amount of code they have to undetsta detail.

In our follow-up survey, 77% of respondents agtewith the

statement, “There is a clear distinction betweetiecthat | own

and the code owned by my teammates.” On the othed some
teams have a policy to avoid personal code ownersécause it
makes individuals too indispensable and promoteshé words
of one of our interviewees, “too much passion atbtire code.”
Code ownership is a long-term proposition, reduchrg number
of times that a developer has to learn a new ca$e.bln the
activities survey, the average time on the curcerte base was
2.6 years, with 32% reporting 6 years or more. ¢eak code

ownership is usually tacit, i.e. part of the memtaldel. Written

records of ownership, when present, are often 6date and

distrusted.

We received conflicting information about desigrcaiments for
issues within a team. Design documents are uswualtjen by a
developer immediately prior to implementing a largeange that
affects other developers to solicit other develspénput on
important decisions. In the interviews, designwoents were
described almost as write-only media, serving toicstire the
developer’'s thinking and as an artifact to desigwviaw, but
seldom read later and almost never kept up-to-datethe other
hand our follow-up survey respondents reported fferdnt
picture of design documents for issues within thant: their
feature teams wrote an average of 7.6 (+ 10.2) mieots in the
prior year, and kept 51% of them up-to-date. Weewnsrrprised
with these numbers and can’t reconcile them with ribsults of
the interviews.

5.2 Team Code Ownership and the “Moat”

Even stronger than personal code ownership is immaf team
code ownershipAn overwhelming 92% agreed with the statement
“There is a clear distinction between the code estuire team
owns and the code owned by other teams.” Feaaamd are
small. 93% stated that their feature team coraisfe2-4 people
(including the respondent). There seems to be @®tsemot at
three-person feature teams, reported by 49%. Fedatams are
almost always collocated, facilitating informal kvledge sharing.

One of the ways developers maintain their mentadehof their
team’s code is by subscribing to check-in messdyeemail,
though several interviewees expressed dissatisfaatiith the
lack of detail provided by teammates.

Small feature teams’ strong code ownership forrkima of moat
isolating them from outside perturbations. The nisatefined, in
part, by design documents, which specify the iat@facross the
moat. Design documents related to cross-team issees less
common than those relevant to issues within thmtesthough
the average number of design documents writtemenldst year
for cross-team issues was 4.5 (+ 7.8), signifigatdss than the
7.6 (x 10.2) for within-team issues (two-tailedest, p<0.01,
t=4.78), cross-team design documents are significamiore
likely to be kept up-to-date (61% versus 51%, taibe t-test,
p<0.01,t=-3.58). The greater care taken with cross-teangdes
documents reflects their important role in definthg moat.

Unit tests, used by 79% of our respondents, arenportant part
of the development process for many reasons. Ongrising

! Throughout this paper, the woagreemeans that the participant
selected either “Somewhat agree”, “Agree”, or “8gly agree”
from a seven-point Likert scale.

Table 3. Forms of code duplication reported by irgrviewees with frequency and importance from followup survey respondents.

Repeated work Example Scattering Fork Branch Languge

Creation Separate developersCopy and Design decision Copy of other Branch Reimplementation by
implement same paste of distributed over team’s code maintained same developer in
functionality example code multiple methods base separately different language

Aware when No Yes Yes Yes Yes Yes

created

Refactoring Awareness at Investment Changing Convincing Combining Changing architecture

challenge creation; different creating architecture other teamto released or implementation
design decisions abstraction make changes branches language

Size of clone Members, classes Members, Members, classe: Many classes, Code base Members, classes

classes code base

Repeated change 24% 44% 29% 13% 25% 29%

Refactoring 19% 39% 14% 5% 6% 15%

Agree problem 42% 41% 37% 29% 28% 29%

function is to defend the moat from outside perdtidns — 54%
of respondents agreed that an important benefiingftesting is
that “they isolate dependencies between teams.”

Almost all teams have g&am historianwho is the go-to person
for questions about the code. Often this persatihdésdeveloper
lead and has been with the code base the longest.

5.3 New team members

Creating a mental model from scratch requires afi@nergy for
the new team member and the team as a whole. QGfften
newcomer is assigned a mentor, often the team rizsigto
designated as the first point of contact for questi about the
code. The mentor helps to jumpstart the newcomeré&ntal
model and social network. Newcomers are much m&edylto
read the team’s design documents than seasonednteambers.
Some teams maintain online documents specificalyr f
newcomers. Unguided exploration of the code is;ranere
commonly the newcomer is assigned bugs specificatly
introduce them to the code while minimizing riskihile all
changes are code reviewed before checkin, newcorsesve
extra attention and feedback on early changesrttake. Several
interviewees viewed fixing bugs as requiring lesesign
knowledge than implementing new features. Bugnéixallows
newcomers to do useful work while still learning tode base.

5.4 Code duplication

Two previous studies [5] [10] and the focus of @ametection
tools (e.g. CCFinder [3]) led us to expect that wiievelopers
were asked about code duplication, they would disaropying
and pasting example API usage code, subclassetharhard-to-
understand example code or even regale us witlestof hard to
refactor clones. When pressed, a few admitted fying and
pasting code in dubious ways. Yet most respondél sibries
that had nothing to do with finding example codecopy and
paste.

From our interviews, we identified six distinct fogs of code
duplication (Table 3), corresponding to columnstlire table.
Each clone type can be characterized by its creatiechanism,
whether developers are aware they are creatinges/othe
refactoring challenges to remove the clones, aedsthe of the
clones. Our follow-up survey also revealed thecpetage of
developers who had made changes repeated in reuftiptes or

refactored or otherwise eliminated duplication dgra one week
period. Finally, developers rated the difficultyaimtaining their
code base caused by each type of clone.

In repeated work clonesmultiple developers separately and
unknowingly reimplement the same functionality. Gieveloper
reported that he had been implementing a small epiet
functionality that another developer was also wuagkbn for a
different problem until a program manager suggetiat he talk
to a second developer. After creation, interviewdewsed these
clones as being difficult to refactor as each dgvet may have
made subtly different decisions that are diffi¢olchange.

The most studied clone typexample clonesoccurs when some
usage context code which illustrates how to creat@ake use of
some code is copied and pasted and modified. Wecexipat this

usually involves a small amount of code. Kémal. [6] argue that

copies frequently diverge and that it is diffictdtpredict whether
the clones would be better off factored into a ladstraction.

Scattered clonesor logical clones, involve crosscutting changes
in the aspect oriented programming sense [4]. Heranging a
particular decision requires making changes to muaigyely
dispersed areas of code. One developer reportadctueectly
changing one method required changing another rdetiat was
hidden several calls deeper into the componenttharaeported
that they would sometimes make a change, hopééobest, and
rely on testers to find any other necessary relebeages.

Fork clonesoccur when a team takes a large portion of coata fr
another team. One developer reported doing thisnwtiey
wished to use code that the original team was @ady to ship.
They subsequently heavily modified the code to nemo
functionality they didn’t need. Forks occur wherc@nsuming
team wishes to use functionality provided by a paidg team in
ways that the producing team is unable to suppatetrviewees,
when asked, all agreed that it was best to avoiletb code
whenever possible. Yet, when faced with the altdreaof
reimplementing the functionality from scratch, fidg is
frequently a better alternative. Particularly idifft are bug fixes.
The consuming team must monitor bug fixes made Hy t
producing team and reimplement the fixes themsgehadsng on
much of the maintenance burden of the producingtea

Branch clonesoccur when developers must reimplement their
change in several branches of the same code bhsg. afen’t

clones in the strict sense of duplicate code heracopies of the
entire code base in various stages of release. d@weloper
reported fixing a bug in both code used in productand the
current version under development.

Language clonesvolve the same code implemented in multiple

languages. One developer reported having the sagtleods in
both C++ and C#.

In contrast to the clone detection literature’sroar view of

cloning as syntactically similar code, developeismed cloning

as making the same change several times. Thisdeslumany
cases involving code not syntactically similar insiagle code
base but cloned across code bases or repeated liiplenu
languages or branches. From the developer’s paigpemany of
these problems seem similar in that individual bhgse to be
fixed in several places, new feature work involhasnges in
many different places, or changes crosscut thexgtteam code
ownership boundary. Future empirical work mightbest served
by focusing on this broader definition of repeatihg same work.

6. RATIONALE AND COMMUNICATION
Understanding the rationale behind code is the nsestous
problem developers face among the problems aetivisurvey
respondents were asked about. 66% of the resptmdgreed
that “understanding the rationale behind a pieceaafe” was a
serious problem (see Table 2). There are many Satetthe
rationale problem: 82% agree that it takes a lotefibrt to
understand “why the code is implemented the waig,it 73%
“whether the code was written as a temporary wankad,” 69%
“how it works,” and 62% “what it's trying to accorigh.”

Consideration of rationale led us to understantiogy developers
understand and explore code. We found that deveddm many
complaints about using their tools to explore codschewed
design documents for interrupting teammates, hde covnership
boundaries to minimize how much they must undedstamnd
rarely documented their understanding for othehss Ted to the
second most serious problem - developers felt theye too
frequently interrupted by their teammates. We alsplored how
developers maintained awareness of changes affeitt@ir code
and what developers meant by code duplication.

6.1 Investigating Code Rationale

When investigating a piece of code, developers fitsh to the
code itself: on average respondents spent 42% %) 20f their
understanding time examining the source code, 209%4706)
using the debugger, 16% (+ 19%), examining cheatsimments
or version diffs, 9% (+ 10%) examining the resu@%p (+ 12%)
using debug or trace statements, and 3% (+ 14%)gusther
means (Figure 5d). In other words, the code itselthe best
source of information about the code. However itas flawless.
Developers commonly become disoriented in unfamgiaurce
code, and discerning the relationship between @bdeprogram
behavior and the source code is often difficult.

When the code itself does not give the answersdtheloper
needs, one might expect them to turn next to tts¢ amount of
information that's written about it — the bug refsothe specs, the
design documents, the emails, etc. This is empdibtioot the
case. Several factors combined to dissuade mosiagers from
using design documents for understanding codet, Firgling
design documents was frequently difficult. Desigocuiments
were stored on internal websites without a usabsch facility,

forcing developers to manually navigate hierarcbatlections
looking for the appropriate design document. Thesen if
developers thought there was a possibility of d@giedocument
containing the information they cared about, it wex worth
looking for. If search were available, it was ndear that
developers would know the correct search termsor8kcdesign
documents were not reliably updated. Thus, devetopensulting
a document would not be sure if the code still oomid to the
document and would be forced to inspect the code.

The second recourse for investigating the ratiobalgnd code is
the social network. If the developer thinks a teat@might be
able to provide the needed information (or the nafrtbe person
who might), she will walk down the hall to talk Withem.

Once the developer has the desired informationretioens to her
office, applies the newfound information, and gets with her

work. This information is precious: it is demonsisa useful,

demonstrably hard to ascertain from the code, aamlabtained at
a high cost. Yet it is exceedingly rare for thisseleper to then
write this information down. The next person whed®the same
information must go through the same laborious alisty

process. There are plenty of reasons that a dexelauld

choose to not record the information. The overhefadhecking

the code out, editing it, and checking it back pogsibly

triggering check-in review processes, merge casflitest suite
runs, etc.) is enough to dissuade the developer fexording the
information as a comment in the code. Some intemés

expressed the concern that the newfound informatvas not
authoritative enough to add permanently to the codehat

checking in the comment under their
inappropriately make them experts. Hence the infbion tends
to remain in the developers’ heads, where it isjesbto
institutional memory loss.

6.2 Interruptions

Each of these unplanned, face-to-face meetingsesepts an

interruption of at least one person. Recoveringmfrthese

interruptions is a substantial problem, rankingosecwith 62%

of developers agreeing that this is the case (TApl®ecovering

from an interruption can be difficult. Developersishremember
goals, decisions, hypotheses, and interpretatioms fthe task

they were working on and risk inserting bugs if ythe
misremember.

Developers have adopted various strategies to atetithe effects
of interruptions on themselves, such as using sedmffice door
or other social cues to deflect interruptions, vimgk on

complicated tasks at times of the day when intdioop are
infrequent, staving off an interruption for a mornewhile

finishing a thought, or scheduling “office hour§bmetimes the
interrupter mitigates the impact of interruption bging email
instead of face-to-face for low-priority issues emailing a
warning 10 minutes before the interruption to dive interrupted
person a chance to save his working context byingridown

notes.

While many (though not all) interviewees indicatttht they
received too many interruptions, all acknowledgebatt
interruptions were a valuable part of the work dt
Interestingly, two interviewees indicated that it@tions had
become more of a problem since their teams hadtedagile
processes.

own names would

6.3 Bug Investigation Example

Developers reported spending nearly half of theiret fixing
bugs. A bug investigation helps illustrate how thébols,
activities, and problems interact to make fixinggbyossible but
also suboptimal. When asked to describe an instafce
difficulty understanding the rationale behind acgi®f code, one
developer responded with a bug investigation naeatwWhile
this is but a single story and not necessarily ggrend based on
a recollection of events and not completely aceyrtillustrates
several themes supported by interview and survey da

After being assigned a new bug through a bug trackool, the
developer first reproduced the bug by navigatingatavebpage
and ensuring thaerror 500 — internal errorwas triggered as
reported in the bug. Next, the developer attaches VYisual

Studio debugger to the web server, set it to borakxceptions,
reproduced the error again, and was presented withull

reference exception in Visual Studio. From an ietpa of the

call stack window, the developer considered thections that
might be responsible for producing the erroneousievaThe

developer switched to emacs to read the methods ueed

ctags.exe to browse callers of methods. The degeldben

switched back to the Visual Studio debugger to gearalues at
run time and see the effects. The developer maddaage,
recompiled, and found that the same exception wilisbeing

produced. Finally, the developer browsed furtherthe call-

stack, tracing the erroneous value to one objbet) to another
object, and finally to a third object protectedhwibutexes.

By this time, the developer had wandered into dbdéehe did not
understand and did not “own” — or have primary ocesibility for

making changes. But a second developer was woxking high
profile feature that touched this code, so he imatety knew
that this second developer would understand thde.cde went to
the second developer’s office, interrupted the sdcdeveloper,
and engaged him in a discussion about the ratidoeiténd the
code. He walked back to his office, made a charaged on this
information, and determined that the change wotldmork,

leaving him with a new problem. He then walked ba&ckthe

Table 4. Agile practices adopted by respondents.

Does your team use % agree
Collective code ownership within the team 49%
“Sprints,” i.e. a development cycle that last fc 42%

(or so) weeks

An intentional policy to involve customers 33%
(internal or external) deeply into design and
planning

“Scrum meetings,” i.e. a brief daily status meet 25%

including all stakeholders

“Burndown” estimate or chart, i.e. a measure of 24%
the time remaining in the sprint

An intentional policy of preferring face-to-fac 16%

over electronic communications

Pair programming, i.e. developers working 16%
together, shoulder-to-shoulder on a problem

A “bullpen” or other open-floorplan space for tt 10%

team

second developer's office who then him that thecfiomality
causing the problem was actually related to cods th third
developer was working on. They both went to visie tthird
developer’s office only to find the third develogavay for lunch.
The first developer, now blocked, switched to arotiask. After
lunch, both developers returned to the third depyais office,
had a design discussion about how the functionatypuld
behave, and finally passed the first developerg tauthe third
developer to make the fix.

This story illustrates several themes in our sus\ayd interviews:
» Developers rapidly switch between multiple tools.

« When looking for detailed information about codeyelopers
first explore the code by reading it and using bugdger.

« When unable to find answers exploring code, dewwop
consult knowledgeable teammates rather than smhsign
documents, email, or other artifacts.

« Face-to-face communication is strongly preferredramail or
IM.

« Developers switch tasks when blocked or interruptad
teammates seeking code knowledge.

« Software development is a highly social process.

e While code ownership within a team is well undeosto
changes crosscut ownership boundaries.

« Developers spend vast amounts of time gatheringiqurs,
demonstrably useful information, but rarely recdrtbr future
developers.

7. OPENNESS TO CHANGE

Developers and development teams are constantiggtrgew
tools and work practices to optimize their work.vBlepers use a
variety of tools to do their job. When writing cod©% use two
or more tools, and 19% use three or more.

In our interviews, we found several developmentmiga
experimenting with “agile practices,” a collectiai behaviors
intended to make software development more effitiecBome
teams were gingerly dipping a toe into the agileéewawhile a
small number were jumping in with both feet (seéléal). 48%
of respondents reported that their team was usiegor more of
the eight practices, 32% three or more, and 20% doumore. A
few respondents (3%) reported that their teams ssgdn or all
eight of the practices. Most developers wanted d¢mtinue
adopting agile practices (53% agreed that theyghbtheir team
“should adopt agile software development methodekgnore
aggressively”) while a few were skeptical (14% agr¢hat their
team should adopessaggressively).

Developers adopted specific agile practices whey felt their
benefits were compelling. Developers shunned dedgguments
in favor of face-to-face communication, designedimally rather
than up front, and employed unit testing. Develdpads reported
preferring daily standup team meetings over weetdam
meetings. Daily meetings encouraged teammateselp éach
other and assisted the lead in responding to pmablelocking
individual developers’ progress. Several teams ¢aade further

2 http://agilemanifesto.org/

by adopting an entire agile process, Scrum [11{ esported
using radical collocation, collective ownershipdasprints.

8. DESIGN RECOMMENDATIONS

Several of the problems we observed might benediinftool
solutions, although further empirical work is firgcessary.

Problem: Developers don’t write down knowledge in design
documents, resulting in constant rediscovery ofiladge known
by developers working on the code in the past.

Solution: Reduce the cost of using design documents by (1)

providing hyperlinks in code to design document§2)rtools that
capture informal whiteboard or paper designs. Twapiecal

questions that must first be answered are how bdadaformal

notes would be for others and how much of what egbsnt
developers need to understand was ever expliaithsidered by
the original developer.

Problem: Interrupted developers lose track of parts of their

mental model, resulting in laborious reconstruct@nbugs and
discouraging more frequent interruptions.

Solution: Externalize developer’s task context — methods'tieey
examined, decisions in progress, and other infaomat in a tool.
This information could also be useful as documémtafor future
developers. The central empirical question is deténg what
information developers consider during a modificatiask.

Problem: It is difficult to discover and consistently change
clones.

Solution: Embed hyperlinks between clone instances with edito

support for navigating between clone instances.

9. CONCLUSIONS

Our exploratory study of developers’ typical adtas, tools, and
problems led to a finding that is likely surprising few —
software development relies heavily on implicit lubedge. Yet, a
detailed examination yielded more interesting firydi — barriers
preventing design document and email use, problevith

interruptions, causes of duplication, and the desptial nature
of software development. We feel that wide-rangiexploratory
studies like ours have an important place withirftvere

engineering to keep tool development rooted in prablems
developers face and fight the perceived irrelevasfcacademic
software engineering research [8]. While many of findings
help inform tool development, many also need muchenstudy.
Finally, it not clear how this study of softwarevd®pment at
Microsoft generalizes to software development inheot
professional environments. Given the diversity mfionments —
large software companies, small software compargefiware
developers in companies whose product is not thievae itself,
open-source development of commercial softwargurduwvork is
needed to understand the generality of these fysdin

10. ACKNOWLEDGEMENTS

Many thanks to Nachi Nagappan for his skills witltistical
analysis, Miryung Kim for very helpful discussiomscluding
suggesting interview questions and an initial favfnour clone
taxonomy, and Andrew Ko, Marwan Abi-Antoun, Jim bigeb,
and Brad Myers for careful readings of earlier traind helpful
suggestions. The authors gratefully acknowledggmaen from a

10

National Science Foundation Fellowship awarded He first
author and by NSF research grant 11S-0534656. pPhjser is
based on work carried out while the first authoswa intern on
the Human Interactions in Programming team at Micfp
Research.

11. REFERENCES

[1] de Souza, C. R., Redmiles, D., Cheng, L., Millen,dnd
Patterson, J. 2004. Sometimes you need to seegtirgalls:
a field study of application programming interfackes
Proceedings of the 2004 ACM Conference on Computer
Supported Cooperative Wofkhicago, lllinois, USA,
November 06 - 10, 2004), 63-71.

[2] Hertzum, M. & Pejtersen, A. M. The information-kieg
practices of engineers: searching for documentgetisas for
people.Information Processing and Manageme3®, 5,
761-778, 2000.

[3] Kamiya, T., Kusumoto, S., and Inoue, K. CCFinder: a
multilinguistic token-based code clone detectiostam for
large scale source codeSE,28, 7 (Jul. 2002), 654-670.

[4] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C.
Videira Lopes, C., Loingtier, J.-M., and Irwin, Aspect
Oriented Programming. IRroceedings of ECOQR.997.

[5] Kim, M., Bergman, L, Lau, T., and Notkin, D. An
Ethnographic Stud of Copy and Paste Programming
Practices in OOPLUnternational Symposium on Empirical
Software Engineering2004.

[6] Kim, M., Sazawal, V., Notkin, D., and Murphy, G.@n
Empirical Study of Code Clone Genealogies. FSE 2005

[7]1 Moran, T. P. and Carroll, J. M., Ed3esign rationale:
concepts, techniques, and usawrence Erlbaum
Associates, Inc, 1996.

[8] Parnas, D.L. On ICSE’s “Most Influential Paperst ACM
Software Engineering Note20, 3, July 1995, 29-32.

[9] Perry, D., Staudenmayer, N., and Votta, L. G. Peopl
Organizations, and Process ImprovemdfEE Software
11, 4, 36-45, 1994.

[10] Rosson, M.B., and Carroll, J.M. The Reuse of Uses i
Smalltalk ProgrammingACM Transactions on Human-
Computer Interaction, 3, 219-253, 1996.

[11] Schwaber, K, & Beedle, MAgile Software Development
with Scrum Prentice Hall, 2001.

[12] Singer, J., Lethbridge, T., Vinson, N., and Angu&ti An
Examination of Software Engineering Work Practidas.
Proceedings of CASCON '9209-223, 1997.

[13] Weiser, M. 1981. Program slicing. Rroceedings of the 5th
International Conference on Software EngineeriSgn
Diego, California, United States, March 09 - 1281p 439-
449,

[14] Wright, G. and Ayton, P. Eliciting and Modeling et
Knowledge InDecision Support System#ol. 3, 13-26,
1987.

