
 1 

Software Comprehension – A Review & 
Research Direction 

 
Michael P. O’Brien 

 
Department of Computer Science & Information Systems 

University of Limerick 
Ireland 

 
E-mail: michaelp.obrien@ul.ie 

 
Technical Report UL-CSIS-03-3  

 
November 2003 

 
 
Abstract 
 

Comprehending computer programs is one of the core software engineering 

activities. Software comprehension is required when a programmer maintains, reuses, 

migrates, reengineers, or enhances software systems. Due to this, a large amount of 

research has been carried out, in an attempt to guide and support software engineers in 

this process. 

 
Several cognitive models of program comprehension have been suggested, which 

attempt to explain how a software engineer goes about the process of understanding 

code. However, research has suggested that there is no one ‘all encompassing’ 

cognitive model that can explain the behavior of ‘all’ programmers, and that it is more 

likely that programmers, depending on the particular problem, will swap between 

models (Letovsky, 1986). 

 
This paper identifies the key components of program comprehension models, and 

attempts to evaluate currently accepted models in this framework. It also highlights 

the commonalities, conflicts, and gaps between models, and presents possibilities for 

future research, based on its findings. 

 
1. Introduction 

 
Software comprehension is “the process of taking computer source code and 

understanding it” (Deimel & Naveda, 1990). Burd et al (2000) defines it as “the 



 2 

activity of understanding existing software systems”. Muller (1994) defines software 

comprehension as “the task of building mental models of the underlying software at 

various abstraction levels, ranging from models of the code itself, to models of the 

underlying application domain, for maintenance, evolution, and reengineering 

purposes”. However, the author enhances this definition, defining software 

comprehension, as “a process whereby a software practitioner understands a software 

artefact using both knowledge of the domain and/or semantic and syntactic 

knowledge, to build a mental model of its relation to the situation”. 

 
Current research into software comprehension models, suggests that programmers 

attempt to understand code using the somewhat clichéd taxonomy of ‘bottom-up 

comprehension’, ‘top-down comprehension’, and various combinations of these two 

processes. 

 
Bottom-up comprehension models, propose that as source code is read, abstract 

concepts are formed by chunking together low-level information (Pennington, 1987), 

(Detienne, 2002), (Shneiderman & Mayer, 1979). In other words, understanding is 

built from the bottom up, by reading the code and then mentally chunking or grouping 

these lines of code into higher-level abstractions. The bottom-up model of software 

comprehension primarily addresses situations where the programmer is unfamiliar 

with the domain. Several ‘top-down’ models of software comprehension have been 

proposed to address the alternative situation, where the programmer has had some 

previous domain exposure. Essentially, these top-down models of comprehension 

suggest that the programmer utilises knowledge about the domain to build a set of 

expectations that are mapped on to the source code (Brooks, 1983), (Shaft, 1992), 

(Good, 1999). 

 
It is unlikely, however, that programmers rely on either one of these strategies 

exclusively. Instead, the literature suggests, they subconsciously adopt one of these to 

be their pre-dominant strategy, based on their knowledge of the domain under study 

(von Mayrhauser & Vans, 1997), (von Mayrhauser et al., 1997), (Shaft & Vessey, 

1995), and switch between comprehension processes as cues become available to 

them (von Mayrhauser and Vans, 1995). In fact, Letovsky refers to programmers as 

‘opportunistic processors’ to reflect the ease with this they change their 

comprehension strategies in response to external cues and stimuli (Letovsky, 1986). 



 3 

Several theories have been developed to aid in program understanding. 

Essentially, this paper attempts to summarise and evaluate a selection of the most 

acceptable theories of program comprehension and highlight any commonalities, 

conflicts, or gaps between them. It discusses these strategies in detail, explaining, 

Pennington’s program and situation models, Shneiderman and Mayer's syntactic and 

semantic understanding model, Soloway & Ehrlich’s approach, Detienne’s work, 

Letovsky’s theory of opportunistic comprehension, and Brooks’ domain mapping 

model. Von Mayrhauser & Vans’ integrated meta-model of program comprehension 

is also discussed. 

 
 
2. Software Comprehension Models 
 

Although software comprehension models differ significantly in their emphasis, 

they all consist of four common elements, namely, a knowledge base, a mental model, 

external representation, and some form of assimilation process (see Figure 1).  

 

A s s im ila tio n
P ro c e s s

P ro g ra m m e r

E x te rn a l
R e p re s e n ta t io n

M e n ta l
M o d e l

K n o w le d g e
B a s e

 
Figure 1 - Components of Software Comprehension Models 

 
Firstly, external representations are essentially, any ‘external’ views available in 

assisting the programmer when comprehending code. This external support may be in 

the form of system documentation, the source code itself, expert advice from other 

programmers familiar with the problem domain, or indeed, any other source code 

similar to the code under observation. 



 4 

Essentially, the ‘knowledge base’ (see section 2.1) can be defined as the 

programmer’s accumulated knowledge before they attempt to understand the code. It 

may consist of an understanding of the domain, general information that may be 

pertinent to that domain, along with programming standards and practices. The 

knowledge base develops and expands as the level of programmer understanding 

deepens.  

 
The programmer’s existing or current representation (therefore understanding) of 

the system under study is referred to as their ‘mental model’. Using the knowledge 

base, mental model, and external representations, the assimilation process 

continuously updates and augments the programmer’s mental model. The 

‘assimilation process’ is the actual strategy, which the programmer employs to 

comprehend the source code (Davis, 1993). One method of assimilation is where 

programmers’ hypotheses are refined and elaborated during comprehension (Brooks, 

1983).  

 
Effectively, hypotheses can be defined as ‘ideas or explanations for something 

that is based on known facts but has not yet been proved’ (Cambridge English 

Dictionary). Brooks (1983) suggests, that programmers use an iterative, hierarchical 

method of generating, refining, or repudiating hypotheses, at different levels of 

abstraction, during code comprehension. Letovsky (1986) subsequently investigated 

the role of hypotheses in code comprehension, referring to hypotheses as 

‘conjectures’. Conjectures are associated with a level of certainty, ranging from a 

complete guess, to complete certainty. This level of certainty affects the way in which 

they are revised or discarded from the mental model at a later stage during the 

comprehension process.  

 
2.1 Knowledge Base 
 

Many researchers have attempted to understand the knowledge, programmers’ 

use, and require, during program comprehension. Knowledge can be obtained at any 

abstraction level, and can thus range from low-level implementation details to higher-

level structural or semantic information. Much research has been carried out to 

investigate the nature of the programmer’s knowledge base and has shown that the 

knowledge base consists of; domain expertise (Brooks, 1983); coding knowledge – 



 5 

beacons (Brooks, 1983), (Rist, 1986) and plans (Wiedenbeck, 1986); syntactic & 

semantic knowledge (Schneiderman & Mayer, 1979), (Gellenbeck & Cook, 1991), 

(Soloway, 1984); domain goals (Von Mayrhauser & Vans, 1997); rules of 

programming discourse (Soloway, 1984); and schemas (Letovsky, 1986), (Detienne, 

2002). These knowledge types span many different [individual] theories/models of 

software comprehension (see Figure 2). 

Mental Model
Domain Expertise

Syntactical & Semantic Knowledge
Beacons

Plans
Schemas

Domain Goals
Rules of Discourse

Knowledge Base

(Current understanding of the system
under study)

 
Figure 2 – The Knowledge Base (Expanded from Figure 1) 

 
 
2.1.1 Domain Knowledge 
 

Brooks (1983) proposed that programmers use ‘domain knowledge’ to 

reconstruct knowledge about the domain of the program and map this to the actual 

source code itself. This reconstruction process is theorized to be ‘top-down’ and 

hypothesis driven, where the programmer is familiar with the domain and is thus able 

to pre-generate hypotheses (expectations), which may come from other programmers, 

their own expertise, or the design documentation (external representations). 

Essentially, Brooks’ proposes that programmers construct mappings from the task 

domain (application domain), through one or more intermediate domains, to the 

programming domain. Although Robson et al (1991) claim this process is a ‘bottom-

up approach, working from the source code using beacons to form an initial 

hypothesis’, Brooks theory asserts that an initially vague and general hypothesis 

(Figure 3, step 1), often generated from the program name, alone, is refined and 



 6 

elaborated upon based on information extracted from the program text and other 

relevant documentation. This primary hypothesis then produces a cascade of 

subsidiary hypotheses (Figure 3, steps 2 & 3), with the decision of which hypothesis 

to pursue, based on the programmer’s motivation for comprehending the program. 

Cascading continues until it produces a hypothesis that is specific enough that the 

programmer can match (verify) it against the source code (Figure 3, step 4). 

Specifically, the programmer begins the verification of a hypothesis when the 

hypothesis deals with operations that can be associated with visible details found in 

the source code. 

 

Primary
Hypothesis

Subsidiary
Hypothesis

Subsidiary
Hypothesis

Subsidiary
Hypothesis

Subsidiary
Hypothesis

Subsidiary
Hypothesis

Subsidiary
Hypothesis

Subsidiary
Hypothesis

Subsidiary
Hypothesis

Source Code

(1)

(2)

(3)

(4)

 
Figure 3 – Brooks’ Hypotheses Generation & Verification Process 

 
2.2.2 Beacons 
 

Beacons, first identified by Brooks (1983), but empirically explored by 

Weidenbeck (1986), are essentially, recognisable or familiar features within the 

source code, which act as cues to the presence of certain structures or plans. As the 

programmer gets more experienced, they become more aware of these segments of 



 7 

code and, during code study, recognition of these segments causes the programmer to 

suspect the presence of a specific plan. Programming plans can be described as 

“program fragments that represent stereotypic action sequences in programming to 

achieve a specific goal” (Rist, 1986). (A good example is a clichéd sort routine in the 

code). The programmer may then search other parts of the code to validate the ‘plan’ 

suggested by the beacon. Brooks (1983) states that beacons can themselves lead to 

validation of hypotheses and to generation of subsidiary hypotheses or more rapid 

verification of later hypotheses.  

 
2.2.3 Syntactic & Semantic Knowledge 
 

Shneiderman & Mayer (1979) suggest an overall cognitive framework for 

describing behaviours involved in program composition, comprehension, debugging, 

modification, and the acquisition of new programming concepts, skills, and 

knowledge. An ‘information processing model’ is suggested, which includes a long-

term store of syntactic and semantic knowledge, and a working memory in which 

problem solutions are constructed. Syntactic knowledge is language dependent and 

concerns the statements and basic units in a program. Semantic knowledge is 

language independent and is built in progressive layers, initially using syntactic 

knowledge & the code, until a mental model is formed which describes the purpose of 

the system. The final mental model is acquired through the chunking and aggregation 

of other semantic components and syntactic fragments of text.  

 

Problem
Statement

Program

Short Term
Memory

Working
Memory

Semantic Syntactic
Knowledge Knowledge

Long Term Memory

Program

Problem
Statement

Comprehension
Activity

 
 

Figure 3 – Syntactic & Semantic Knowledge 



 8 

According to this theory, during comprehension, the programmer takes program 

statements into short-term memory (see Figure 3). Syntactic knowledge is then 

brought from long-term memory to develop a low-level understanding of these code 

constructs. Semantic knowledge is then brought from long-term memory to match the 

syntactic constructs and identify their function and is built-up by chunking to form 

higher-level semantic units. In other words, the semantic knowledge associated with 

individual statements is chunked together to form higher-level semantic units. This 

chunking process eventually leads to an overall understanding of the program goals. 

 
2.2.4 Plans & Rules of Programming Discourse 
 

Soloway & Ehrlich (1984) suggests that ‘expert’ programmers possess two types 

of programming knowledge: programming plans, as mentioned above (Weidenbeck, 

1986), (Gellenbeck & Cook, 1991), (O’Brien & Buckley, 2001) and rules of 

programming discourse. Soloway & Ehrlich (1984) suggest that program 

comprehension is primarily based on opportunist recognition of programming plans 

(see Figure 4).  

 

T im e

   T 0

   T 1

   T 2

   T 3

   T 4

P ro g ra m m e r

S c a n s  C o d e

D is c o v e rs  a
B e a c o n  in  c o d e

P ro m p ts  p la n
e x p e c ta tio n

U s e s  b e a c o n  to
v a lid a te
e x is te n c e  o f
p la n  u s in g
a n c illa ry
e v id e n c e

K n o w le d g e  o f
P re s e n c e  o f
G o a l

S o u rc e  C o d e

*

P la n
E le m e n ts

 

Figure 4 – Opportunistic Recognition of Programming Plans 



 9 

They propose that programs are composed from programming plans, which have 

been adapted to meet the needs of the specific problem. They also believe that these 

plans are composed in accordance with the rules of programming discourse, i.e., the 

“rules that specify the conventions in programming that programmers should adhere 

to, to communicate with others” (Soloway & Ehrlich, 1984). Programmers initially 

scan the code (Figure 4, T0) using 'shallow reasoning', for critical line(s) or beacons. 

These beacons suggest the presence of plans in their source code. After finding the 

beacon (Figure 4, T1), programmers seek to validate the presence of the goal (Figure 

4, T3) by studying the code for additional elements of the plan (Figure 4, T2). 

 
Plans, defined earlier, are also referred to as ‘clichés’, and are essentially, as Von 

Mayrhauser (1995) states, “knowledge elements for developing and validating 

expectations, interpretations, and inferences”. Von Mayrhauser further describes plans 

in terms of slot types and slot fillers. Slot types can be thought of as generalised 

templates, which the maintainer can apply to a number of specific problems to create 

slot fillers. Slot fillers are specific to a particular problem. Slot types can thus be 

thought of as an abstraction of a possibly infinite collection of slot fillers. An example 

of a slot type could be a function such as a sort routine, whereas, a slot filler could be 

a particular implementation of a sort routine, for example a quick sort. Slot fillers are 

related to slot types via either a Kind-of or an Is-a relationship.  

 
Soloway & Ehrlich (1984) state that plans correspond directly to the notion of 

‘schemas’ in text comprehension, where schemas are generic knowledge structures 

that guide the comprehender’s interpretations when understanding text passages. In 

the context of program comprehension, plans also capture the programmer’s attention 

and guide the actual understanding process itself. 

 
Rules of Programming Discourse then, are related to this concept and can be 

defined as code conventions that aid the recognition, and thus development, of 

programming plans; in other words, they are used to build stereotypical 

implementations of goals that fit the mental schema of others. Soloway & Ehrlich’s 

research presents five initial rules of programming discourse: - 

 
1. Variable names should reflect function.  
 
2. Exclude redundant code (i.e. code that will not be executed) 



 10 

3. Variables initialized by assignment statements should be updated by 

assignments 

 
4. Code should not be repeated to do the same job 

 
5. An ‘IF’ statement should not be used when a statement body is guaranteed 

to be executed only once, and ‘WHILE’ statements should only be used 

for repeated execution. 

 
Soloway & Ehrlich (1984) believe that programs are built from both knowledge 

of plans, and the rules of programming discourse.  They attempted to examine the role 

of this programming knowledge in the comprehension process by carrying out several 

experiments. Due to the in-depth experience of expert programmers, Soloway & 

Ehrlich found that expert programmers performed better on plan-like programs, than 

on unplan-like programs. This they believed was due to their experience in the 

programming field, and their tendency to recognize the familiar rules of programming 

discourse. On unplan-like programs, Soloway noticed that experts’ performance 

deteriorated, as they seemed confused by the rule violations, and indeed their 

performance levels dropped to near the level of the novice programmers. 

 
2.2.5 Schemas 
 

Letovsky (1986) and Detienne (2002), present the concept of ‘schemas’, as a way 

to describe the knowledge of expert programmers. A schema can be defined as “a data 

structure, which represents generic concepts stored in memory” (Detienne, 2002). 

Schemas contain variables and are instantiated when specific values are linked to the 

different variables. Somewhat analogous to ‘plans’, schemas have been used in the 

areas of artificial intelligence and psychological studies of text understanding 

(Eysenck & Keane, 2000). According to this approach, the activity of designing 

software consists of retrieving schemas from memory, suitable for dealing with 

certain contexts, and instantiating them to produce a program. During software 

comprehension, programmers activate these schemas from memory, using ‘indexes’ 

in the source code and infer certain information, prompted by the schemas invoked 

(Detienne, 2002). Essentially, ‘indexes’ are analogous to beacons, or focal lines (Rist, 

1986), where they correspond to the focal part of the code, triggering the activation of 



 11 

schemas and subsequent hypotheses or expectations of what else will be found in the 

program.  

 
Letovsky’s ‘plausible slot filling’, is analogous to schema-based processing, 

where the implementation detail encountered by the programmer causes a suitable 

abstract goal to be activated in the programmer’s memory (Letovsky, 1986). This goal 

is in the form of a ‘frame’, which contains a number of titled information slots 

(variables). Each of these slots indicates some characteristic of the goal and can 

usually be filled by a restricted set of values. The programmer populates one of the 

slots in this frame with a plausible value from the implementation detail encountered, 

and subsequently validates this by further exploring this implementation detail.  

 
Soloway and Ehrlich (1984) hypothesise that programmers initially scan the code 

using 'shallow reasoning', for critical line(s) or beacons, which they use to prompt 

plans in their mental model. This, again, seems analogous to Letovsky’s plausible slot 

filling, in that implementation detail causes a suitable abstract plan to be activated in 

the programmer’s memory. Programmers seek to confirm or validate the plan of that 

goal they have generated from the code by filling the slots.  

 
2.2.6 Domain Goals & Clichéd Implementations  
 

During comprehension, the programmer may be involved in searching the system 

for plans, which correspond to specific domain goals. This implies that the 

programmer has knowledge of the typical goals of the domain modelled by the system 

and the possible manner in which those goals many be implemented (Von Mayrhauser 

& Vans, 1997). 

 
2.2 Approaches to Software Comprehension 
 

The process or method, which programmers use in undertaking the 

comprehension task, is known as the ‘assimilation process’. Assimilation makes use 

of the knowledge base and mental model, discussed earlier, in conjunction with the 

source code (and any other relevant external representation), to build upon, or revise, 

the mental model of a system, and thus the programmers’ understanding of the 

program. Although some of these processes (Shneiderman & Mayer, 1979), (Brooks, 



 12 

1983), have been partially described in the description of the knowledge base, they 

will be further elaborated upon in this section. 

 
2.2.1 Assimilating Program & Situation Models 
 

Pennington (1986) presents a theory of program comprehension based on the 

framework of text comprehension, put forward by Kintsch & Van Dijk (1978) and 

Van Dijk & Kintsch (1987). Pennington suggests that the programmer, during the 

comprehension process, begins at the source code level, understanding small 

fragments. These small fragments are composed into larger aggregates, whose 

purpose is constructed from its parts. In other words, this process initiates at the level 

of source code statements, and builds up to more macro textual components, 

eventually leading to an understanding of domain-centred goals. Chunking is the 

central activity in this comprehension process and is used to develop two different 

mental models: a program model (at source code level) and a situation model (at 

domain level). Programmers begin by firstly attempting to form the program model, 

in which the control blocks (while loops, for loops, if constructs) of the program are 

the basis for mental ‘chunks’. Following the partial construction of this program 

model, the programmer then begins to create a more domain-oriented model of the 

system, the situation model. The development of this situation model requires 

knowledge of the application domain to mentally represent the code in terms of real-

world objects and to identify the program’s functional hierarchy (Detienne, 2002). 

 
Von Mayrhauser and Vans (1995) propose an integrated theory of software 

comprehension, combining features of the program and situation models (Pennington, 

1987), and the ‘top-down’ model (Soloway & Ehrlich, 1984). This integrated process 

or ‘meta-model’, evolved from the experiments carried out by von Mayrhauser & 

Vans, which concluded that programmers use a combination of assimilation processes 

when understanding software (see Figure 5). 

 



 13 

T o p -D o w n  M o d e l

P
ro

gr
am

 M
od

el

S
itu

at
io

n 
M

od
el

Lon g T
e rm

 M
em

o ry
K now ledg e  S truc tu re s

T o p -D o w n
S tru c tu re s

P ro g ra m
M o d e l

S tru c tu re s

S itu a tio n
M o d e l

S tru c tu re s

 
Figure 5 – Von Mayrhauser & Vans (1995) Meta-Model 

 
The integrated model is made up of four main components, namely, the program 

model assimilation process, the situation model assimilation process, a top-down 

assimilation process, and a knowledge base. The first three components reflect the 

comprehension processes of (Pennington, 1987) & (Soloway & Ehrlich, 1984) 

respectively, while the knowledge base refers to the knowledge required to perform 

these processes. Programmers may switch between all three approaches at any time 

during the comprehension process, as indeed, Von Mayrhauser has shown in her 

empirical work. During a comprehension session, the knowledge base stores existing 

and newly acquired knowledge for future use. 

 
Von Mayrhauser & Vans state that the top-down model comes into effect 

predominantly when the programmer is familiar with the program or its application 

domain. In the presence of unfamiliar code, the programmer switches predominantly 

to the bottom-up model (although there is evidence to suggest that the true picture can 

be more complex (O’Brien & Buckley, 2001)). Here, program and situation models 

are built following a multilevel approach: a preliminary situation model is developed 

after a partial program model has been formed and both models are then refined with 

an opportunistic strategy. However, recognition of a beacon during the construction of 

the program may suggest a high level hypothesis, causing a return to the top-down 

model. 



 14 

The integrated meta-model has been used to identify the sequences of activities 

carried out to accomplish a comprehension goal and to understand how these are 

aggregated into higher-level processes (von Mayrhauser & Vans, 1996), (von 

Mayrhauser & Vans, 1994). These can form the basis for identifying information 

needs during program comprehension and to define useful tool capabilities (von 

Mayrhauser & Vans, 1993). 

 
2.2.2 Domain Mapping 
 

This process views knowledge as being organised into distinct domains that 

bridge between the original problem and the final program (Blum, 1989). The 

assimilation process is one of reconstructing knowledge links between these domains 

for the programmer (Brooks, 1983). This reconstruction process is theorised to be top-

down and hypothesis driven, when the programmer is familiar with the application 

domain. An initially vague and general hypothesis is refined and elaborated upon 

based on the programmer’s knowledge, information extracted from the program text 

and other relevant documentation. When the comprehension process is complete, 

Brooks (1983) claims that a hierarchy of hypotheses will exist with the primary 

hypothesis at the top, and the subsidiary hypotheses below. Brooks further indicates 

that hypotheses may fail for one of three reasons. Firstly, the programmer may not be 

able to find code to bind to a particular subsidiary hypothesis. Secondly, the same 

code may be bound to two different hypotheses. Finally, there may be some parts of 

the code that cannot be bound to any hypothesis. Regrettably, Brooks did not carry 

out any formal empirical evaluation of this theory, although several researchers have 

since performed empirical studies that support it (von Mayrhauser & Vans, 1995), 

(von Mayrhauser & Vans, 1997), (Shaft & Vessey, 1995). The main limitation with 

this theory is that it over-emphasises the ‘top-down’ approach to comprehension, 

dismissing other strategies as ‘degenerative processes’. It does not take into account, 

programmers who are inexperienced in the domain, who cannot use ‘top-down’ 

comprehension as they are lacking the knowledge to formulate the hypotheses in the 

first place. Novice programmers therefore seem to resort to a ‘bottom-up’ process 

based on the source code, which is not available here. Shaft (1995), in her 

experiments, makes explicit the high degree of programmer effort spent on bottom-up 

processing, even when programmers comprehend code from their domains of 

expertise. 



 15 

2.2.3 Text Understanding & Problem Solving 
 

Detienne (2002) suggests that there are two contrasting types of approaches to 

software comprehension: ‘text understanding’ and ‘problem solving’. She proposes 

that there are three main models to describe the way programmers understand 

software, namely, the ‘functional model’, the ‘structural model’ and the ‘mental 

model’.  

 
2.2.3.1 Text Understanding Approach 
 

The functional model is mostly top-down and schema driven. According to this 

model, as the programmer reads the program source code (text), they match the 

content to schemas, using program structure and variables / variable names, as 

beacons. However, this requires the programmer to know many unique schemas, 

making this model somewhat irrelevant to programmers who are unfamiliar and 

inexperienced programming with the domain. Results from Detienne’s experiments 

showed that only experts possess and invoke content rich schemas or ‘knowledge 

schemas’ to understand their programs. In their experiments, Soloway and Ehrlich 

(1984) showed that if the schema’s implementation in the code were deliberately 

made non stereotypical, expert programmers would have much more difficulty in 

understanding programs than novices. Thus a possible confliction arises here on how 

expert programmers perceive a non-clichéd program. Some programs fit a lot of 

schemas, while others, perhaps created by novices, may contain many violations. 

 
The structural method to comprehending software utilises a hierarchical 

breakdown of the program. Detienne states that according to this structural approach, 

to understand a program is to construct a network of relations. Two types of model 

fall into the structural method, namely, the structural schema approach and the 

propositional network. The structural schema approach shares the ‘top-down’ 

orientation with the functional approach. Essentially, structural schemas, or 

“superstructures”, represent the “general structure of stories” (Detienne, 2002), and 

are activated during the course of reading the program text to guide the understanding 

process (structural in nature). The propositional network approach, unlike the 

structural schema approach, is bottom-up in orientation. A ‘proposition’ can be 

defined as a unit of information that contains one of more arguments along with a 

relational term. Propositions are linked among themselves by referential links, and 



 16 

according to this approach, comprehension depends on identifying the referential 

coherence among the program’s textual elements.  

 
Unlike Pennington’s model (Pennington, 1987), these two models (functional & 

structural) can be directly mapped to functional and object oriented programming as 

functional programming lends itself to propositional modelling while OO lends itself 

to situational modelling. This is by far a more plausible method of understanding 

software. 

 
The third, and final component of this model is the ‘mental model’ based on 

(Pennington, 1987), which combines the structural approach with the functional 

approach. Essentially this is a bottom-up internal representation of the program that 

considers the problem goals and data flow. The mental model approach to software 

comprehension means that in order to fully understand a program, one has to 

construct a detailed representation of the ‘situation’. Building this mental model is a 

time consuming effort, as it is constrained by the limited capacity of working 

memory. The process, itself, is based on the invocation of domain knowledge, as 

much as on semantic & general knowledge, such as knowledge schemas.  

 
2.2.3.2 Problem Solving Approach 
 

Koenemann & Robertson (1991) suggest that seeing program comprehension, as 

a “problem solving activity” is probably a much better overall framework than 

identifying it as a textual understanding activity. Research by Gilmore & Green 

(1984), also argues that understanding a program is to solve a problem and Littman et 

al (1986) suggest that programmers read source code either systematically, or in a 

non-linear way, reflecting a level of decision making on what parts of the code are 

relevant to the task at hand.  

 
Littman et al (1986) argue that there are two basic approaches to program 

comprehension. First there is the systematic approach, where the maintainer examines 

the entire program tracing through the control flow and data flow abstractions, so as 

to gain complete understanding of the program. This understanding is made up of 

static knowledge, where the programmer knows what’s in the function, and dynamic 

knowledge, where the programmer realises the delocalised run-time relationships 



 17 

involved.  These models are completed before any attempt is made to modify the 

program.  

 
The other approach is the as-needed strategy, where the programmer focuses only 

on the code related to the particular task at hand and does not study the dynamic 

relationships in much detail at all. This approach involves the software engineer 

looking only at code related to a particular problem or task. One limitation of this 

approach highlighted in Young (1996) is that it can miss some of the dependencies 

within code fragments.  The effectiveness of as-needed comprehension methods then 

become questionable when using them for defect detection in object-oriented code, 

which, due to its many features, contains a greater number of dependencies than 

traditional procedural programs.   

 
However, using the as-needed strategy, subjects can minimise their 

understanding, only concentrating on the areas of the program that they feel are 

relevant to the modification task at hand. In contrast to this, subjects using the 

systematic approach should get a feel for how the modifications may affect the data 

flow and control flow between program component feeling that they would be 

required to have this knowledge to ‘mesh’ the alteration with the entire system. 

Littman et al’s empirical validation, does, however, have one limitation. On the small 

program used in their experiment, it is clear that the systematic approach is superior, 

but on large programs this approach is not feasible and an as-needed strategy may 

need to be employed. Furthermore, the comprehension tasks in this experiment 

involved programmers debugging code, however, the findings may not apply to 

contexts outside debugging (Good, 1999). 

  
Gilmore & Green (1984) propose that it is the actual task being carried out, 

whether it be maintenance or otherwise, which determines the cognitive processes 

employed, to search for information relevant to carrying out the task. These cognitive 

processes depend entirely on the relevance of that information to the task at hand. As 

different programming languages stress different information types, Gilmore & Green 

compared information notations in procedural & declarative languages, based on a 

question-answering task. They found that the procedural notation was superior for 

answering sequential questions, i.e., questions about what happens in a program after 

some action, X, is performed. On the other hand, the declarative notation was better 



 18 

for answering circumstantial questions, i.e., questions about what combination of 

circumstances in a program will cause action, X, to performed. This study shows the 

importance of the information selection process, and representation, and it is therefore 

plausible to state that performance is influenced by the notational structure of the 

language, when the structure is compatible with the demands of the task. 

  
2.2.4 Letovsky’s Observations 
 

Letovsky (1986) states that, “the human understander is best viewed as an 

opportunistic processor capable of exploiting both bottom-up and top-down cues as 

they become available”. In this light, he has developed a theory of software 

comprehension, based on a more general understanding of the interplay between 

different human cognition processes. Essentially this implies recognition that a 

combination of strategies may be employed during comprehension.  

 
The knowledge base of this approach consists of programmer expertise and 

background knowledge, in the form of application and programming domain 

knowledge, program goals, plans, and rules of discourse. The mental model 

essentially encodes the programmer’s understanding of the program. Initially, it 

consists of a specification of the program’s goals but later describes the 

implementation in terms of the data structures and algorithms used. This mental 

model is organised into three different layers: the specification layer, which describes 

the goals of the program, the implementation layer, which expresses the lowest level 

of abstraction, and the annotation layer, which links each goal in the specification 

layer with its realisation in the implementation layer. The assimilation process 

describes the evolution of the mental model using information contained in the 

knowledge base, and if explicit, from the external representation. Assimilation is 

opportunistic and occurs either top-down or bottom-up depending on the 

programmer’s initial knowledge base.  

 
As Letovsky states, the human understander exploits the varying strategies 

depending on clues in the available information. Programmers may begin by scanning 

the code for these beacons (Soloway & Ehrlich, 1984). Once a beacon has been 

identified, it may trigger a hypothesis, which in turn, may trigger several more 

subsidiary hypotheses, eventually leading to validation against the code (Brooks, 



 19 

1983). During this validation, the programmer may opportunistically identify another 

beacon, which prompts for an alternative hypothesis (Soloway, 1984). The elements 

of domain knowledge in Soloway’s approach are similar to Brooks’ domain, and the 

elements of goal and sub-goals, have a high level of similarly to the task and 

intermediate level domains that Brooks mentions. Also, Soloway’s formal definition 

of plans, correspond to the relationships between the low-level domain that Brooks 

mentions. 

 
Letovsky (1986) also carried out an experiment in which maintenance 

programmers were given a program to modify, and encouraged to think-aloud so that 

their thoughts could be recorded. From the recordings, he focused on two types of 

events, namely questions, and conjectures, and developed taxonomies of these events. 

From the question taxonomy, he identified some of the processing taking place: -  

 
‘How Questions’ – These questions illustrated that programmers work from 

expectations down to the implementation expected in the code. For example, “How is 

the tax receipt calculated”? Here the tax receipt is their expectation and they are trying 

to find the implementation in the code. Letovsky’s ‘how questions’ and conjectures 

tie in with Brooks’ (1983) hypotheses generation and verification stage, discussed 

earlier, where hypotheses are matched against the code. These hypotheses can be in 

the form of a goal-oriented question such as Letovsky’s how question, e.g. “how is 

the tax receipt implemented?” 

 
‘What Questions’ – These questions illustrated that programmers work from the 

code to some idea of its purpose. For example, “What does this variable actually do in 

the code”?  

 
‘Why Questions’ are questions that again illustrated that programmers work from 

the code to some idea of its purpose. For example, “Why is this variable in the code”? 

‘What’ and ‘why’ questions illustrate that the programmer is working from the source 

code to domain rationale, in other words, creating a situation model of the system 

(Pennington, 1987), (Detienne, 2002). 

 
Conjectures were classified in a similar manner to identify their top-down or 

bottom-up orientation. It was Letovsky’s taxonomy of questions that led him to 



 20 

suggest that a mixture of strategies were employed during comprehension. Part of this 

cognitive model of program comprehension is basically consistent with the model 

developed by Brooks. Whereas Brooks emphasises movement from the domain to the 

implementation approach to reading programs, Letovsky offers convincing evidence 

that programmers incorporate this process into an opportunistic approach that uses 

other strategies where applicable. 

 
3. Contextualizing Software Comprehension 

 
The previous sections of this paper examined some of the accepted theories of 

software comprehension, which attempt to explain how a software engineer goes 

about the process of understanding code.  

 
Essentially, the process of software comprehension is carried out by people with 

varying levels of prior knowledge and expertise, and can involve languages with 

many different characteristics. Just as there is no one definition of ‘comprehension’ 

(Sneed, 1995), there is no ‘one’ all-encompassing model that can summarise the 

comprehension processes of programmers with varying skill levels and knowledge 

differences and contexts. Gilmore (1990) suggests that having a wide repertoire of 

programming strategies available is one of the hallmarks of expert programmers. 

Therefore, an opportunistic approach to comprehension may be the most plausible, 

where programmers adopt their comprehension strategies in response to external cues 

and stimuli.  

 
Empirical studies carried out by O’Brien & Buckley (2001) showed the different 

comprehension strategies employed by real programmers in an industrial setting. 

Their studies found three distinct strategies; expectation-based comprehension, where 

the programmer uses domain knowledge to pre-generates hypotheses, inference-based 

comprehension, where the programmer infers meaning from clichéd implementation 

in the code, and bottom-up comprehension, where the programmer works through the 

code on a line-by-line basis, building up an understanding methodically. 

 
• Using these findings (O’Brien & Buckley, 2001) as a preliminary foundation for 

future work, research should now begin to probe the ‘grey areas’ between, and 



 21 

around, expectation-based, inference-based, and bottom-up software 

comprehension strategies (see Figure 6), along with the realism of these processes. 

 

Expectations Inferences Bottom-up

 
 

Figure 6 – A Basis For Future Research 
 

Perhaps the reality of these comprehension strategies (grey areas) can be best 

probed, in a more realistic setting, where the programmer uses the executing 

system as an external representation, as is very often the case. Very seldom, it is 

envisaged, do programmers actually sit down with code and understand code for 

their own sake. Typically the comprehension they undertake is shaped by a wider 

task context (Littman et al, 1986), (Good, 1999), (Detienne, 2002). During this 

task, programmers may have an executing software system as a resource, and very 

little research has been performed on this more realistic scenario. “Software is 

inherently dynamic, yet much of the analysis and comprehension processes focus 

entirely on the static source code of the software” (Smith & Munro, 2002). It 

seems intuitive to think that the presence of dynamic representations (executing 

system) will have strong effects on the comprehension processes employed by 

software engineers as they attempt to understand a system, and future work should 

address how representations of the executing system impact the software 

comprehension process. Some researchers, such as Gugerty & Olson (1986), and 

Nanja & Cook (1987), have carried out miniature studies, where programmers had 

access to dynamic representations. However, research in this area remains very 

limited. 

 
• However, as more subtle comprehension processes are being probed, the analysis 

used to distinguish between these subtle categories becomes much more involved 

and intricate. O’Brien & Buckley (2000a) used an augmented version of Shaft’s 

coders manual (Shaft, 1992) as a classification instrument for distinguishing 



 22 

between expectation-based, inference-based, and bottom-up comprehension. It is 

envisaged that future research will further enhance this classification schema as 

these subtle comprehension processes are explored. 

 
A major aspect of future work should be to examine what actually triggers 

software practitioners’ hypotheses in an industrial setting and whether these 

hypotheses are domain, algorithmic, or structural, in nature. Hypotheses may be 

triggered from a knowledge of the company’s coding conventions, the code 

mnemonics, the structure of the code, the documentation, or it may be pre-

generated – Brooks (1983), for example, suggests that the trigger is pre-generated 

and that beacons are used to confirm the existence of plans. Finally, the trigger 

may be execution based (see Table 1). 

 
Trigger based on… 

         Cause 

Type 

Coding 

conventions 

Code 

Mnemonics 

Code 

Structure Documentation 

Pre-

generated 

expectation 

System 

Execution 

Domain       

Algorithmic       

Structural       

 
Table 1 – Identifying the Nature of Hypotheses (Initial Proposal) 

 
This research should also aim to establish where these hypotheses are mapped to 

in the source code. Essentially, domain hypotheses are primarily pre-generated 

and usually require an in-depth knowledge of the application domain. O’Brien & 

Buckley (2001) found that programmers’ familiarity with the application domain 

was associated with a comprehension process that relied upon pre-generated 

expectations.  Using the knowledge of the application domain, programmers were 

able to pre-generate expectations about typical program goals from that 

application domain. Algorithmic hypotheses can be defined as hypotheses, which 

are generated from a [sometimes partial] examination of the code. In other words, 

having an in-depth knowledge of the programming language semantics, 

programmers are in a good position to generate algorithmic hypotheses from the 

actual source code itself. Finally, structural hypotheses are hypotheses generated, 



 23 

again from an examination of the source code, and in a pilot study carried out by 

O’Brien & Buckley (2000b) some programmers recognised structural patterns in 

the code and attempted to draw “structure charts” of the code when understanding 

it.  

 
Perhaps industrial programmers behave similarly when decomposing the source 

code into procedures. Future work should build upon research carried out by Von 

Mayrhauser (1999) and examine the usage of each type of hypothesis made by 

industrial programmers as they carry out their day-to-day maintenance tasks. One 

way of doing this is to carry out an empirical study to observe, in situ, routine 

maintenance tasks by a software practitioner, capturing his/her thought processes 

and visual environment (screen), using a camcorder. A questionnaire administered 

to the engineer prior to the study would assess their levels of expertise along with 

what aspects of the domain under observation, are most familiar to the engineer. 

Essentially, this ‘realistic’ study, aims to examine the activities and strategies of 

industrial programmers to elucidate what they actually do in situ, rather than the 

experimenter presenting them with source code and enforcing time limits, etc. 

Emphasis should of course be placed on: rich descriptions of the protocols 

observed in the experiment, the instrumentation used in the experiment 

(debugging facilities, etc), the reliability of the results, and the validation and 

replication of the results achieved. 

 
• Another major area of future work is to address the interplay between expectation 

based, inference-based, and bottom-up, software comprehension strategies, if they 

prove to be strategies that translate into real domain, by carrying out experiments 

on individual software practitioners in an industrial setting, as they perform their 

day-to-day maintenance tasks. This research should also attempt to probe the 

factors that cause programmers to switch from one comprehension process to 

another, or to emphasize one over another. There is no agreement among 

researchers as to what the “correct” model of software comprehension actually is 

(Good, 1999). Some theories are diametrically opposed: either programmers pre-

generate hypotheses and validated them in the code, or they start with the code, 

understanding it on a line-by-line basis until a full understanding is reached. They 

cannot do both, unless they subconsciously adopt an opportunistic model as in 



 24 

Letovsky (1986), (Von Mayrhauser & Vans, 1995). However, there are certain 

factors, which passively affect the choice of pre-dominant comprehension strategy 

programmers’ employ during cognition, and these are not always intuitive 

(O’Brien & Buckley, 2001). This should form a major part of future research. 

 

One of the main problems facing novice industrial programmers is their lack of 

prior programming and domain knowledge. As a result of this, a ‘top-down’ 

approach to understanding would prove quite difficult to employ, as the initial 

stages (i.e. hypotheses formulation) depend on information these programmers do 

not possess. Instead, they may adopt a bottom-up approach to understanding, 

where they study the program on a line-by-line basis, building up to an 

understanding methodically. 

 
If programmers possess an extensive knowledge of the domain at hand, they are 

likely to be able to generate these hypotheses about program goals and match 

them against the code, following Brooks’ model (Brooks, 1983) of program 

comprehension. Programmers may also scan through the code in a bottom-up 

fashion, and after finding a beacon, may generate a new hypothesis about the 

code, or indeed, detect more information about previously generated hypotheses. 

Programmers may attempt to piece together all the facts relating to the program, 

gaining an eventual understanding. In other words, the level of domain knowledge 

associated with the individual programmer may indeed determine the strategy 

employed. Other factors that may influence the passive choice of strategy include: 

having the executing system as an external representation, along with the 

conventions of the company, such as indentation of the source code and useful 

comment lines, and finally, the language of the program itself (see Table 1). 

 

Essentially then, future research should have at its heart, an agenda that aims to 

make empirical studies more justifiably sound, establishing them as an acceptable 

approach to gaining invaluable insight into the comprehension strategies of industrial 

programmers. Regrettably, many computer scientists dismiss empirical studies as 

“ineffective” and some argue that empirical studies are a shallow and artificial view 

of the nature of programming skill (Sheil, 1981). This pessimism is possibly due to 

the fact that many studies in the area of software comprehension use students 



 25 

(novices) as participants in empirical studies. Indeed, this would be justified if their 

studies examined novice programmers, but in order to bridge the so-called gap 

between theory and practice, it is imperative that professional, industrial programmers 

serve as participants, so as to gain insight into the comprehension processes and 

techniques of ‘real-world’ programmers. The use of professional industrial 

programmers’ in their naturalistic environment makes results more justifiably sound, 

and allows for a less constricted experiment design (O’Brien et al, 2001). In an 

industrial setting, groups of programmers may spend months or longer, on programs 

containing several thousand lines, which may have originally come from many 

different sources (Good & Brna, 2003). It is therefore imperative to study industrial 

software practitioners so as to renew, or at least aim to renew, the trust of practice, 

and indeed, academia, in empirical studies of programmers. 

 
4. Conclusion 

 

The comprehension of computer programs is a complex ‘problem-solving’ task. 

This paper has reviewed the various cognition theories that attempt to model 

programmers understanding processes. The paper discussed how, for example, 

programmers may generate hypotheses about the functionality of the code and how 

‘beacons’ in the code build new, or simply refine, hypotheses, during the 

comprehension session. Most of the theories discussed in this paper, are the result of 

empirical studies based on observations of programmers during software maintenance 

and evolution, however, the ecological validity and realism of these studies is 

questionable. The overall aim of these models is to help to develop better tools and 

processes that will assist software maintainers with their tasks. However, no 

‘complete’ theory exists that can provide an all-encompassing model of programmers 

comprehension strategies when understanding source code. Early work in this area 

tended to use undergraduates as participants in empirical work where the task was to 

understand relatively small pieces of code. Recent work has used industrial software 

practitioners as participants, however, their comprehension task was chosen prior to 

the experimental session, by the experimenter. Future work should indeed concentrate 

on industrial programmers, as subjects, carefully documenting their understanding 

processes as they carry out their ‘day-to-day’ maintenance activities. In particular, 

observational studies should be carried out to assess the role of dynamic 



 26 

representations (executing system) in the comprehension process as very little 

research has been carried out to date on this scenario.  

 
Although observational methods of research somewhat sacrifice experimental 

control, they may provide a richer picture and perhaps, a more realistic one, and 

accurately reflect how industrial programmers comprehend software, thus bridging 

the so-called gap between research and practice. 

 

4. Bibliography 
 

Blum, B., (1989), “Volume, Distance, and Productivity”, Journal of Systems and 
Software, Vol. 10, pp 217-226 
 
Brooks, R., (1983), "Towards a Theory of the Comprehension of Computer 
Programs", International Journal of Man-Machine Studies, Vol. 18, pp 543-554 
 
Burd, L., Munro, M., & Young, P., (2000), “Using Virtual Reality to Achieve 
Program Comprehension”, http://www.year2000.co.uk/munro.html 
 
Davis, S. P., (1993), “Models and Theories of Programming Strategy”, International 
Journal of Man-Machine Studies, Vol. 39, pp 237-267 
 
Deimel, L., Naveda, J., (1990), “Reading Computer Programs: Instructor’s Guide and 
Exercises”, Technical Report CMU/SEI-90-EM-3, Software Engineering Institute, 
Carnegie Mellon University. 
 
Detienne, F, (2002), “Software Design – Cognitive Aspects”, Springer-Verlag 
London, Ltd., ISBN: 1-85233-253 
 
Eysenck, M., Keane, M., (2000), “Cognitive Psychology: A Student’s Handbook”, 4th 
Edition, Psychology Press 
 
Gellenbeck, E., Cook, C., (1991), “An Investigation of Procedure and Variable Names 
as Beacons During Program Comprehension”, Technical Report 91-60-2, Oregon 
State University 
 
Gilmore, D. J., Green, T. R. G., (1984), “Comprehension and Recall of Miniature 
Programs, International Journal of Man-Machine Studies, Vol. 21, pp31-48 
 
Gilmore, D. J., (1990), “Expert Programming Knowledge: A Strategic Approach”, In 
Hoc, Green, Samurcay, and Gilmore, (Editors), Psychology of Programming, 
Computers and People Series, Chapter 3.2, Academic Press, London 
 
Good, J., (1999), “Programming Paradigms, Information Types and Graphical 
Representations: Empirical Investigations of Novice Program Comprehension”, Ph.D. 
Thesis, University of Edinburgh. 
 



 27 

Good, J., Brna, P., (2003), “Toward Authentic Measures of Program 
Comprehension”, Proceedings of the Joint EASE and PPIG Conference, Keele 
University 
 
Gugerty, L., Olson, G., 1986, “Comprehension Differences in Debugging and Novice 
Programmers”, Proceedings of Empirical Studies of Programmers, Ablex Publishing, 
pp 13-27 
 
Kintsch, W., van Dijk, T. A., (1978), “Toward a Model of Text Comprehension and 
Production”, Psychological Review, Vol. 85, pp 363-394 
 
Koenemann, J., & Robertson, S., (1991), “Expert Problem Solving Strategies for 
Program Comprehension”, Proceedings of the SIGCHI Conference on Human 
Factors in Computing, ACM Press 
 
Letovsky, S., (1986), "Cognitive Processes in Program Comprehension", Empirical 
Studies of Programmers: 1st Workshop, p 58 
 
Littman D.C., Pinto, J., Letovsky S. and Soloway E.. (1986) “Mental Models and 
Software Maintenance”. Empirical Studies of Programmers: 1st Workshop, pp 80-98 
 
Muller, H., (1994), “Understanding Software Systems Using Reverse Engineering 
Technology”, http://www.rigi.csc.uvic.ca 
 
Nanja, M., Cook, R. C., (1987), “An Analysis of the On-line Debugging Process”, in 
Empirical Studies of Programmers, 2nd Workshop, Ablex Publishing 
 
O’Brien, M. P., Buckley, J., (2000a), “The GIB Talk-aloud Classification Schema”, 
Technical Report 2000-1-IT, Limerick Institute of Technology, Available on request 
from authors 
 
O’Brien, M. P., Buckley, J., (2000b), “Pilot Study Refinement of a Software 
Comprehension Based Experiment”, Proceedings of the 5th Science and Computing 
Research Colloquium, Athlone Institute of Technology 
 
O’Brien, M. P., Buckley, J., (2001), “Inference-based and Expectation-based 
Processing in Program Comprehension”, Proceedings of the 9th International 
Workshop on Program Comprehension, Toronto, Canada 
 
Pennington, N., (1987), "Comprehension Strategies in Programming", Empirical 
Studies of Programmers: 2nd Workshop, p 100 
 
Rist, R., (1986), “Plans in Programming: Definition, Demonstration, and 
Development”, Proceedings of the 1st Workshop on the Empirical Studies of 
Programmers, Ablex Publishing, pp 28-47 
 
Robson, D. J., Bennett, K. H., Cornelius, B. J., Munro, M., (1991), “Approaches to 
Program Comprehension”, Journal of Systems Software, Vol. 14, pp 79-84 
 



 28 

Shaft, T. M., (1992), “The Role of Application Domain Knowledge in Computer 
Program Comprehension and Enhancement”, Unpublished Ph.D. Thesis, 
Pennsylvania State University 
 
Shaft, T. M., Vessey, I. (1995) “The Relevance of Application Domain Knowledge: 
The Case of Computer Program Comprehension”, Information Systems Research, 
Vol. 6, No. 3 
 
Sheil, B. A., (1981), “The Psychological Study of Programming”, Computing 
Surveys, Vol. 13, No. 1, ACM Press 
 
Shneiderman, B, Mayer, R, (1979), “Syntactic/Semantic Interactions in Programmer 
Behaviour”, International Journal of Computer and Information Sciences, Vol. 8, No. 
3 
 
Smith, M., & Munro, M., (2002), “Runtime Visualization of Object Oriented Software”, 
1st International Workshop on Visualizing Software for Understanding & 
Analysis, Paris, France 
 
Sneed, H., (1995), “Understanding Software Through Numbers: A Metric Based 
Approach to Program Comprehension”, Software Maintenance: Research and 
Practice, Vol. 7, pp 405 - 419 
 
Soloway, E., Ehrlich, K., (1984), "Empirical Studies of Programming Knowledge", 
IEEE Transactions on Software Engineering, IEEE Computer Society, Vol. SE-10, 
No. 5, September 
 
Van Dijk, T. A., Kintsch, W., (1983), “Strategies of Discourse Comprehension”, 
Academic Press, New York 
 
Von Mayrhauser A., Vans A. M., (1993), "From Program Comprehension to Tool 
Requirements for an Industrial Environment", Proceedings of the 2nd International 
Workshop on Program Comprehension, Italy 
 
Von Mayrhauser A., Vans A. M., (1994), "Dynamic Code Cognition Behaviours for 
Large Scale Code", Proceedings of the 3rd Workshop on Program Comprehension, 
Washington 
 
Von Mayrhauser A., Vans A. M., (1995), "Program Understanding: Models and 
Experiments", Advances in Computers, Vol. 40, No. 4, pp 25-46 
 
Von Mayrhauser A., Vans A., (1996), "Identification of Dynamic Comprehension 
Processes During Large Scale Maintenance", IEEE Transactions on Software 
Engineering, Vol. 22, No. 6 
 
Von Mayrhauser A., Vans A., (1997), "Program Understanding Behaviour during 
Debugging of Large Scale Software", Proceedings of Empirical Studies of 
Programmers: 7th Workshop, pp 157-179 
 



 29 

Von Mayrhauser A., Vans A., Howe A.E., (1997), "Program Understanding 
Behaviour during Enhancement of Large Scale Software", Software Maintenance: 
Research and Practice, Vol. 9, pp 299-327 
 
Von Mayrhauser, A., (1999), “A Coding Schema to Support Systematic Analysis of 
Software Comprehension”, IEEE Transactions on Software Engineering, Vol. 25, No. 
4 
 
Wiedenbeck, S, (1986), “Beacons in Computer Program Comprehension”, Intl. 
Journal of Man-Machine Studies, 25, pp 697-709 
 
Young, P., (1996), “Program Comprehension”, Visualization Research Group, Centre 
for Software Maintenance, University of Durham 
 


