guest edilors” itroduction................................

Barry W. Boehm, University of Southern California

Richard E. Fairley, Oregon Graduate Institute

ow much is 68 + 73? Engineer: “It’s 141.” Short and sweet.
Mathematician: “68 + 73 = 73 + 68 by the commutative law
of addition.” True, but not very helpful.

Accountant: “Normally it’s 141, but what are you going to
use it for?”

Often, the accountant’s answer is the
most helpful of all. You may have been look-
ing for the answer to the following question:
“The Inspections people estimate that they
can remove 68% of my software defects; the
Test people estimate that they can remove
73%. How many will they remove to-
gether?” Clearly, 141% is not a good an-
swer; there must be some defects that are be-
ing counted twice.

This story brings out two important
points about software estimation:

1. It’s best to understand the background of
an estimate before you use it.

2. It’s best to orient your estimation approach
to the use that you’re going to make of the es-
timate.

Grant Rule’s essay on “Bees and the Art
of Estimating” (see the sidebar) illustrates
point 1 well. Jumping into an estimate of the

22 IEEE SOFTWARE November/December 2000 0740-7459/00/$10.00 © 2000 IEEE

by Grant Rule

Have you heard the one about the bees? Are there any apiarists
amongst IEEE Software’s readership? Well never mind. Even if
you're not a beekeeper and absolutely hate bread and honey, you
can still participate in this simple experiment.

I've run this trial on numerous courses and at several confer-
ences in the US, the Netherlands, Germany, Scandinavia, and the
UK—and each time, | get pretty similar results.

Try it now. Take paper and pencil (or use your handheld, if you're a
gadget freak) and write your estimate for the number of insects in an
average hive of English honeybees. No cheating now!

Are you done? Oh, you don’t know anything about bees2 Well, this
is an estimating task. Estimating is about predicting in the face of uncer-
tainty and incomplete knowledge, so that's no bar. We estimate for un-
familiar software projects every day. You don't bother2 Oh! How ever
do you priorifize your set of possible tasks (that's a rhetorical question)2
What do | mean by “average”2 Now, that's a good question. Do |
mean the “mean population of bees in a hive over time, taking a typical
annual cycle into account”2 Or do | mean “the mean, calculated from
the total population of bees in England at a specific time, divided by the
number of hives in England”2 And anyway, what do | mean by “in-
sect”2 Should you include critters such as mites, pillbugs, and wasps that
live on, in, or among the bees? Hang on! Bees are hive animdls; ar-
guably the queen and her workers and drones constitute a “single ge-
nefic individual,” so should you just count the number of queens2 And if
the hive is on the point of swarming (May or June maybe), should you
count the queens that leave fo find @ new hive?

The point, of course, has nothing to do with bees. It is about the
habits and practice of estimating.

When I've run this trial with a “live” audience, very few people
have questioned the implicit assumptions (actually 10 from a total of
1,100 £ 10%). Subsequent discussion, and daily observation, leads
me to suppose that the same is frue when those people estimate for
software projects. By the way, | forgot to tell you that all the “live” tri-
als were with groups of software measurement or improvement enthu-
siasts. The absence of documented assumptions, or even any consid-
eration of the assumptions, pretty much makes an estimate unrepeat-
able and probably worthless. Especially if you believe, as I do, that
each software project is a “complex system with sensitive dependence
on initial conditions” (but that's a topic for another time).

To return to the bees. It seems that the population of worker hon-
eybees in a hive fluctuates during the course of the seasons and
with the weather and depending on the food supply. Taking any
populated hive at random, there is a 95% probability that it will
contain a population in the range of 20,000 to 60,000 workers
and drones. Add one for the queen if you like.

The surprising fact, fo me, is that during the course of my trials,
only about eight people have ever given a range estimate (that is,
less than 1% of participants). Most go for precise answers, with a
high probability of being incorrect. | would forecast that 80-90%
of those of you who made an attempt at an answer wrote down a
single number (95% confidence). I'm assuming that Software’s
readership, with an engineering background, is 10 to 20 times

more likely to give a range estimate than a point estimate.

It seems fo be a built-in human characteristic o prefer precision over
accuracy. By this | mean that humans prefer a specific, single value that
pretends to certainty (and which the estimator “knows” is probably
wrong) over a range value that almost certainly includes the most prob-
able value and hence is correct, but which retains some level of uncer-
tainty. As there are very few cerfainties in this life, this proclivity is—ijust
maybe—a contributing factor to the well-reported high percentage of
failed software projects.

Who’s an Expert?

The most common basis used for estimating is so-called “expert
opinion.” That is, project managers make estimates by referring to
their past project experiences. But few can produce any historic
data when challenged, and typically there is very little rigor in the
approach. No assumptions are documented, no baseline measure-
ments made, and often no provision exists for feedback. Few organ-
izations consistently hold post-implementation reviews, and the proj-
ect manager who makes personal records of the accuracy of esti-
mates seems a rarity.

Estimating is more craft than science. Good craft work requires
lots of practice. As a degree of uncertainty can be guaranteed, the
method used to deal with this uncertainty is crucial to ensure re-
peatability and accuracy and to build confidence in one’s ability as
an estimator. The specific calibrations, and even the details of the
algorithms and tools used, are secondary. After all, once you can
repeatably estimate the range in which an ultimate result will fall,
even though the range is wide, it is only a matter of tweaking the
calibrations to narrow the range and improve the precision of your
estimating. That's a matter of comparing the estimate with the result,
adjusting the calibrations, then doing it all again. Over and over.
Just as athletes do when they practice.

The key is repetition and practice. It's very difficult to produce re-
liable estimates if you rarely exercise the craft, say once at the be-
ginning of each project (maybe once in nine months2), or if the
feedback loop between estimate and result is too long to facilitate
recalibration. If you can’t estimate in the small, then don't estimate
in the large. It's too expensive.

Good estimators practice on inconsequential topics, so they de-
velop the habits of estimating. They do so all the time, on various
kinds of estimate. For example, How long will this journey take2
What is the percentage of home-built versus imported cars in town?
How many emails will | receive tomorrow2 What effort is needed to
produce each use case? How much effort will | “waste” on un-
planned work tomorrow2 Even when it is not their responsibility,
good estimators challenge themselves to produce an estimate, for
their own benefit if not for others. And then they improve over time.

Or, on the other hand, you might just think we are very sad people.

About the Author

Grant Rule, o founder of the European consultancy Software Measurement Services Ltd.,
helps organizations improve their estimating, risk, and requirements processes through bench-
marking and (MM-based services; PG_Rule@compuserve.com; www.software-measurement.com.

November/December 2000 1EEE SOFTWARE 23

_ number of bees in a hive without under-

You can often
get both better

vour estimate

24

and simpler
estimates
If you keep
the use of

IEEE SOFTWARE

standing the counting rules can produce a
pretty useless estimate. The same is true for
software: Does an estimate of 100 person-
months for “software development” include
analysis and design, integration and test, de-
ployment, management, or uncompensated
overtime? If you use the estimate without
knowing the answers, you can get yourself
into serious trouble.

Point 2 highlights the fact that estimates
have a number of uses, and you can often
get both better and simpler estimates if you
keep the use of your estimate in mind. For
example, suppose you are doing estimates
for a make-or-buy analysis. The vendors’
quotes for the “buy” option are clustering
around $100K for satisfactory-looking
products, and it is looking like the “make”
option will be a good deal more expensive.
In this case, you can make a simpler and
even stronger estimate for the “make” op-
tion by using optimistic assumptions about
its size, complexity, and staff capability. If
even the resulting optimistic “make” esti-
mate comes out at $130,000, you have both
saved yourself a good deal of estimating ef-
fort and produced a stronger conclusion
that the “buy” option is better than even the
best-case “make” option.

Using Your Estimates

Besides setting budgets and schedules
and supporting make-or-buy analyses, soft-
ware estimation techniques can have several
additional decision support uses:

m supporting negotiations or tradeoff analy-
ses among software cost, schedule, qual-
ity, performance, and functionality;

m providing the cost portion of a cost—
benefit or return-on-investment analy-
sis;

m supporting software cost and schedule risk
analyses and risk management deci-
sions; and

m supporting software quality or produc-
tivity improvement investment decisions.

For the latter, for example, the Cocomo
IT productivity ranges shown in Figure 7 of
Bradford Clark’s article provide the basis
for analyzing various mixed strategies of in-
vestments in personnel capability improve-
ment, process maturity, software reuse, soft-

November/December 2000

ware tools, and multisite software develop-
ment support.

Another observation in Grant Rule’s es-
say about estimation perspectives involves
the dynamic nature of the software field.
One perspective is that software projects
will necessarily evolve during development
and that up-front estimates cannot be pre-
cise. Several software cost and schedule esti-
mation models now provide (optimistic,
most likely, and pessimistic) estimation
ranges rather than point estimates.

These ranges support entirely new
process models better attuned to the dy-
namic nature of modern software, such as
cost- or schedule-as-independent variable
(CAIV or SAIV). At USC, we have evolved
a highly successful SAIV approach for de-
veloping Web-based digital library systems
on a necessarily-fixed schedule of 24 weeks.
It works as follows:

= Manage the developers’ and clients’ ex-
pectations to recognize that not all fea-
tures can be developed in 24 weeks, and
have the clients prioritize their desired
features.

= Using an estimation model providing
optimistic—pessimistic schedule estimate
ranges, converge on a core-capability set
of top-priority features that even pes-
simistically is buildable in 24 weeks.

m Build the core capability, which usually
will take less than 24 weeks, and use the
remaining time to add the next-highest-
priority features.

Even with a considerable dynamism and
uncertainty in the nature of the desired
product, this approach almost always pro-
duces a satisfactory result in a short, fixed
development time.

As a final perspective, the dynamism of the
software field means that the software esti-
mation discipline needs to be continually rein-
venting itself. The articles in this special focus
are good examples of this. Traditional soft-
ware estimation models did not have to deal
with graphical user interface builders, objects,
process maturity, and Web-based systems.
Traditional software estimation methods
were either expert-based or model-based, and
did not try to mix the two. The articles here
show healthy new approaches to these phe-
nomena and indications that the estimation

field is rising to the challenge of continually
reinventing itself.

The Articles

Consistent with the theme of “Recent De-
velopments in Software Estimation,” this is-
sue of IEEE Software presents six articles
that report on promising estimation tech-
niques, each of which can potentially im-
prove the estimation process, the accuracy of
the resulting estimates, and the productivity
and quality achieved by software developers.
The techniques reported are not “tried and
true” because it is in the nature of recent de-
velopments in science and engineering that
others must subject them to trial use before
they become accepted practices. However,
these authors present approaches that are
worthy of consideration by estimators and
by those who affect and are affected by esti-
mates for software projects.

In “Improving Size Estimates Using His-
torical Data,” James Bielak presents an analy-
sis of a completed C++ project and shows
that the number of GUI elements in a com-
ponent and the number of GUI events han-
dled by the component provide a rough es-
timate of the component’s size in source
lines of code. The number of methods in a
component’s interface and the number of
components reused from the architecture
can also be used to estimate size, but the es-
timate depends on a component’s position
within the overall architecture.

Analysis of defect data obtained from
software inspections is often used to identify
problem areas in software projects. Stefan
Biffl, in “Using Inspection Data for Defect
Estimation” presents the design and results
of a large-scale experiment in which he in-
vestigated the accuracy of defect estimation
models based on inspection data. He shows
that the accuracy of subjective defect esti-
mation models based on weighted averages
of estimates by individual team members is
superior to the accuracy of objective DEMs.

In “Enhancing the Cocomo Estimation
Models,” Joanne Hale, Allen Parrish, Randy
Smith, and Brandon Dixon propose estimation
adjustment factors based on the task assign-
ments of project team members that can be
used to improve the accuracy of existing cost
estimation models. They show improvements
in the predictive abilities of Cocomo I and Co-
como II when these factors are included.

“Empirically Guided Software Guessti-
mation” by Philip Johnson, Joseph Dane,
Carleton Moore, and Robert Brewer reports
on an experiment in which developer-gener-
ated “guesstimates” of software effort were
more accurate than analytical estimates.
However, they also found that access to a
range of analytical estimation methods ap-
peared to be useful to developers in generat-
ing their guesstimates and improving them
over time.

In the article “Web Development: Esti-
mating Quick-to-Market Software,” Don-
ald Reifer proposes a cost model for Web
development projects that combines a size
measure based on Halstead’s Volume
measure (using number of operators and
operands) and a function-point-like table of
complexity weights. Size estimates are used
in Cocomo-like equations to produce esti-
mates of effort and duration. He proposes
eight cost drivers for the effort adjustment
factor. As Reifer points out, there are still a
large number of open issues to be resolved;
however, his article shows an approach to
developing estimation models for this im-
portant and growing domain of software
engineering.

The final article, “Effects of Process Ma-
turity on Software Development” by Brad
Clark, presents the results of his analysis of
161 software projects (the USC Cocomo 1T
database). His results indicate that, for the
projects analyzed, a one-level change in
process maturity resulted in a 4% to 11%
reduction in project effort. Larger projects
realize the larger gains. Clark applied the
analysis across the five maturity levels of the
Software CMM.
He speculates
that the percent-
age reduction in
effort is not uni-
form across all
levels. He could
not determine
this because his
data did not con-
tain a sufficient
level of detail to
permit analysis of
improvement be-
tween levels. This
work does, how-
ever, summarize a

November/December 2000

The ability to
accurately

element of an
engineering
discipline.

IEEE SOFTWARE

scope projects
IS an essential

25

About the Editors

Barry W. Boehm is TRW Professor of Software Engineering and director of the Center
for Software Engineering at the University of Southern California. He has served as director of
the US Department of Defense DARPA Information Science and Technology Office, director of
the DDR&E Software and Computer Technology Office, chief scientist of TRW's Defense Systems
Group, and head of the Rand Corp.’s Information Sciences Department. His current research fo-
cuses on integrating a software system’s process models, product models, property models, and
success models via an approach called MBASE (Model-Based Architecting and Software Engi-
neering). His contributions to the field include the Constructive Cost Model (Cocomo), the spiral
model of the software process, and the Theory W (win—win) approach to software management
and requirements determination.

Boehm received his BA from Harvard and his MS and PhD from UCLA, all in mathematics. He received an honorary
ScD in computer science from the University of Massachusetts. He is an AIAA Fellow, an ACM Fellow, an
INCOSE Fellow, an IEEE Fellow, and a member of the National Academy of Engineering. Contact him at USC Center for Soft-
ware Engineering, Los Angeles, CA 90089-0781; boehm@sunset.usc.edu.

Richard E. (Dick) Fairley is a professor of computer science and director of the
software engineering program af the Oregon Graduate Insfitute. He also teaches in the Oregon
Master of Software Engineering degree program, offered collahoratively by four Oregon uni-
versities. His research interests include software estimation, project management, software
process modeling, risk management, real-time systems, and software engineering education.
Prior fo this, he held tenured appointments at three universities, including dean of computer
science at Colorado Technical University, and founded and ran a consulting company.

Fairley received his PhD in computer science from the University of California af Los Ange-
les; he also has a BS and MS in electrical engineering. Contact him af the Oregon Graduate Insi-
tute, Dept. of Computer Science and Engineering, 20000 N.W. Walker Rd., Beaverton, OR 97006;
d.fairley@computer.org.

solid analytical analysis of what till now has
been largely anecdotal evidence that process
maturity results in decreased project effort.

Software engineering is concerned with
building software-intensive systems and
products within the constraints of time, re-
sources, technology, quality, and business
considerations. The ability to scope proj-
ects accurately is an essential element of an
engineering discipline. Estimation models,
procedures, and techniques are essential
components of the software engineering
discipline. As the field changes, the tech-
niques of estimation must, of necessity,
change. The articles in this issue present
new developments in software estimation
that show the way to accommodating the
needs of the always-changing world of soft-
ware engineering. @

SOFTWARE ENGINEERING

ENGINEERING

Take a leadership
role in Software
Engineering.

Master of Science in
Software Engineering

A SMU graduate degree will give
you a competitive advantage in the
new millennium.

Core curriculum developed in consulta-
tion with Software
Engineering Institute.

Emphasis on software and system
design principles and practical problems
of bringing products to market.

Available nationwide through
videotape distance education.

For information call

214.768.3232

www.seas.smu.edu

SMU will not discriminate on the basis of race,
color, religion, national origin, sex, age, disability,
or veteran status.

26 IEEE SOFTWARE November/December 2000

