Seminar Configurable Systems

Prof. Zeller / Christian Lindig Tcl

Summary

In Tcl: An Embeddable Command Language John K. Ousterhout proposes to
make applications end-user programmable by embedding a command language
into them. The paper discusses the design of such a language, and its imple-
mentation as a C library.

Ousterhout observes that some end-user programmable applications like the
Emacs editor are powerful and popular. For their easy and systematic creation
he proposes the Tcl (Tool Command Language) toolkit. It provides an inter-
preter for a shell-like language implemented as a C library. An application
becomes programmable with Tcl when important functionality of the appli-
cation is added as new primitives to a Tcl interpreter, which is then linked
with the application. A primitive can take either the form of a new primitive
command, or of a new (abstract) datatype.

Embedding an interpreter into an application has implications for its control
flow: the application does not control the interpreter, but rather is controlled
by it: the building blocks of an application are called from the interpreter and
hence ultimately from the program the interpreter is executing. This leads to an
application architecture where the core application becomes a library consisting
of passive functions that are called from the interpreter.

The design of an embedded language has two important aspects: the lan-
guage exposed to the user, and the implementation exposed to the developer.
On the language level, Tcl is close to a Unix shell: a command evaluates string
arguments which it interprets as file names, expressions, numbers, or lists of
strings. While being an imperative and procedural language, Tcl is substantially
simpler than, say, Pascal: no user-defined types, just one data type (string),
no static scoping, or closures. However, Tcl does have exceptions. Ousterhout
justifies this simplicity with a likewise simple implementation: null-delimited
strings are easiest to handle from within C.

Ousterhout likes to keep things simple but I believe he overdoes it at least
for the language: the everything-is-a-string approach leads to an unreadable
and slow program full of quotes and escapes, in particular when using lists in
Tecl, the only supported higher-level datatype. The Tcl language also misses
the separation into a syntactical and a grammatical layer that is common in
modern languages. Even Lisp has it, a language that Ousterhout names as an
inspiration. In addition, Lisp has several scalar and complex data types, which
are badly missed in larger Tcl programs. Contrary to what Ousterhout claims,
programs written in embedded languages need not to be small. Emacs, which
he also names as an inspiration, is proof for that.

The paper’s main contribution is the observation that applications with
embedded languages can share the same general core language, which thus can
be factored out as a library. But only, if the language is easy to extend with



application-specific primitive types and values. I believe the success of Tcl is
mostly due to its solid design and implementation as a C library, not as a
language. It has sparked a wide array of Tcl-enhanced applications, several
books, and has its own conference.



