
Seminar Configurable Systems

Prof. Zeller / Christian Lindig Recursive Make

Summary

Recursive Make Considered Harmful by Peter Miller discusses software con-
struction using Make for projects that span several directories. Using an ex-
ample, Miller shows the shortcomings and dangers of the traditional approach
where each directory has its own Makefile that is executed by an recursively
invoked instance of Make. In the example, two directories have mutual depen-
dencies which cannot be separated in two Makefiles without effectively writ-
ing one global Makefile. Distributed Makefiles are notorious for missing these
inter-directory dependencies and thus causing incorrect builds. The traditional
counter measures fail to solve the problem reliably or lead to overlong build
times because the build process is iterated for several times. As a consequence,
Miller advocates the use of a single, global Makefile that knows all dependen-
cies. This solution is traditionally greeted with skepticism and Miller rejects
often-used arguments against them: a single Makefile is not necessarily big-
ger than multiple Makefiles, less maintainable, more complicated to create, or
causes longer build times.

Miller devotes a large part of the paper to efficient Makefiles. He concluded
from experiments that time spent by Make itself is significant, especially caused
by frequent re-evaluation of variables. Providing detailed code he discusses how
to store automatically derived dependencies for C programs in many files such
to avoid recomputing dependencies unnecessarily. The paper ends with the
finding that previous literature on Make fails to discuss the usage of Make in
multi-directory projects.

The paper offers valuable advice for practitioners: the running example,
the shortcoming of the traditional approach, and the advocated solution are
discussed in detail. From a scientific point of view the paper is less satisfying.
It contains many claims, especially about the performance of Make, that are
not substantiated. An exact and reproducible breakdown of how much time
is spent where in a Make-based build process would have been useful. The
paper is written under the premise that Make’s design is not to blame for the
problems observed in large builds. When the paper was written in 1998, already
a number of attempts existed (tools like Mk, Cake, NMake) to overcome the
weaknesses of Make. From a scientific point of view, a comparison with these
would have been interesting.

1


